


How to implement Frame switching in Python Tkinter GUI programming
1. Introduction to the tkraise() method of Frame
Usually, a Tkinter application consists of multiple Frames. And you often need to switch between Frames to display the Frame relevant to the user's selection.
Tkinter allows Frames to be stacked together. To display a specific Frame, just place one on top of another in stacking order. The top Frame will be visible.
To put the Frame on top, you can use the tkraise() method of the Frame widget, as shown below:
frame.tkraise()
2, tkraise usage example
The following will implement one The temperature conversion small application uses two different Frames for Fahrenheit and Celsius temperatures. The UI window is composed as follows:
ConverterFrame will have two instances, one to convert the temperature from Fahrenheit to Fahrenheit Convert temperature to Celsius and another one to convert temperature from Celsius to Fahrenheit:
In the first step, define a TemperatureConverter class with two static methods: fahrenheit_to_celsius and celsius_to_fahrenheit.
class TemperatureConverter: @staticmethod def fahrenheit_to_celsius(f, format=True): result = (f - 32) * 5/9 if format: return f'{f} Fahrenheit = {result:.2f} Celsius' return result @staticmethod def celsius_to_fahrenheit(c, format=True): result = c * 9/5 + 32 if format: return f'{c} Celsius = {result:.2f} Fahrenheit' return result
The fahrenheit_to_celsius and celsius_to_fahrenheit methods will return a formatted string if the second argument is omitted or True is passed to them. Otherwise, they return the result as a number.
Second step, define the ConverterFrame that will display the UI for converting the temperature from Fahrenheit to Celsius and vice versa.
To do this, you need to make the ConverterFrame more flexible by adding the following parameters to the __init__()
method:
will display the temperature in Fahrenheit and Celsius string
Callback function used to convert temperature.
class ConverterFrame(ttk.Frame): def __init__(self, container, unit_from, converter): super().__init__(container) self.unit_from = unit_from self.converter = converter # field options options = {'padx': 5, 'pady': 0} # temperature label self.temperature_label = ttk.Label(self, text=self.unit_from) self.temperature_label.grid(column=0, row=0, sticky='w', **options) # temperature entry self.temperature = tk.StringVar() self.temperature_entry = ttk.Entry(self, textvariable=self.temperature) self.temperature_entry.grid(column=1, row=0, sticky='w', **options) self.temperature_entry.focus() # button self.convert_button = ttk.Button(self, text='Convert') self.convert_button.grid(column=2, row=0, sticky='w', **options) self.convert_button.configure(command=self.convert) # result label self.result_label = ttk.Label(self) self.result_label.grid(row=1, columnspan=3, **options) # add padding to the frame and show it self.grid(column=0, row=0, padx=5, pady=5, sticky="nsew") def convert(self, event=None): """ Handle button click event """ try: input_value = float(self.temperature.get()) result = self.converter(input_value) self.result_label.config(text=result) except ValueError as error: showerror(title='Error', message=error) def reset(self): self.temperature_entry.delete(0, "end") self.result_label.text = ''
How does the above code work?
1) Use the unit_from parameter to display the temperature label.
2) Call the self.convert callback in the convert() method to convert the temperature from one unit to another.
3) Define the reset() method to clear the entry widgets and result labels when the Frame switches from one to another.
Third, define a ControlFrame class that displays radio buttons for selecting which Frame to display. The ControFrame class inherits from ttk.LabelFrame.
class ControlFrame(ttk.LabelFrame): def __init__(self, container): super().__init__(container) self['text'] = 'Options' # radio buttons self.selected_value = tk.IntVar() ttk.Radiobutton( self, text='F to C', value=0, variable=self.selected_value, command=self.change_frame).grid(column=0, row=0, padx=5, pady=5) ttk.Radiobutton( self, text='C to F', value=1, variable=self.selected_value, command=self.change_frame).grid(column=1, row=0, padx=5, pady=5) self.grid(column=0, row=1, padx=5, pady=5, sticky='ew') # initialize frames self.frames = {} self.frames[0] = ConverterFrame( container, 'Fahrenheit', TemperatureConverter.fahrenheit_to_celsius) self.frames[1] = ConverterFrame( container, 'Celsius', TemperatureConverter.celsius_to_fahrenheit) self.change_frame() def change_frame(self): frame = self.frames[self.selected_value.get()] frame.reset() frame.tkraise()
How does the above code work?
Each radio button has a value of 0 or 1.
Create two instances of the ConverterFrame class, one responsible for converting the temperature from Fahrenheit to Celsius, and the other responsible for converting the temperature from Celsius to Fahrenheit. In addition, define a dictionary to store these Frames. The keys of the Frame are the same as the values of the radio buttons.
When a radio button is clicked, the change_frame() method is called to select the corresponding Frame from the dictionary based on the value of the selected button.
Call Frame's reset() method to reset the input fields and result labels. And also calls the tkraise() method to display the Frame.
Fourth, define the App class inherited from the tk.Tk class:
class App(tk.Tk): def __init__(self): super().__init__() self.title('Temperature Converter') self.geometry('300x120') self.resizable(False, False)
Finally, start the program
if __name__ == "__main__": app = App() ControlFrame(app) app.mainloop()
The code is integrated as follows:
import tkinter as tk from tkinter import ttk from tkinter.messagebox import showerror class TemperatureConverter: @staticmethod def fahrenheit_to_celsius(f, format=True): result = (f - 32) * 5/9 if format: return f'{f} Fahrenheit = {result:.2f} Celsius' return result @staticmethod def celsius_to_fahrenheit(c, format=True): result = c * 9/5 + 32 if format: return f'{c} Celsius = {result:.2f} Fahrenheit' return result class ConverterFrame(ttk.Frame): def __init__(self, container, unit_from, converter): super().__init__(container) self.unit_from = unit_from self.converter = converter # field options options = {'padx': 5, 'pady': 0} # temperature label self.temperature_label = ttk.Label(self, text=self.unit_from) self.temperature_label.grid(column=0, row=0, sticky='w', **options) # temperature entry self.temperature = tk.StringVar() self.temperature_entry = ttk.Entry(self, textvariable=self.temperature) self.temperature_entry.grid(column=1, row=0, sticky='w', **options) self.temperature_entry.focus() # button self.convert_button = ttk.Button(self, text='Convert') self.convert_button.grid(column=2, row=0, sticky='w', **options) self.convert_button.configure(command=self.convert) # result label self.result_label = ttk.Label(self) self.result_label.grid(row=1, columnspan=3, **options) # add padding to the frame and show it self.grid(column=0, row=0, padx=5, pady=5, sticky="nsew") def convert(self, event=None): """ Handle button click event """ try: input_value = float(self.temperature.get()) result = self.converter(input_value) self.result_label.config(text=result) except ValueError as error: showerror(title='Error', message=error) def reset(self): self.temperature_entry.delete(0, "end") self.result_label.text = '' class ControlFrame(ttk.LabelFrame): def __init__(self, container): super().__init__(container) self['text'] = 'Options' # radio buttons self.selected_value = tk.IntVar() ttk.Radiobutton( self, text='F to C', value=0, variable=self.selected_value, command=self.change_frame).grid(column=0, row=0, padx=5, pady=5) ttk.Radiobutton( self, text='C to F', value=1, variable=self.selected_value, command=self.change_frame).grid(column=1, row=0, padx=5, pady=5) self.grid(column=0, row=1, padx=5, pady=5, sticky='ew') # initialize frames self.frames = {} self.frames[0] = ConverterFrame( container, 'Fahrenheit', TemperatureConverter.fahrenheit_to_celsius) self.frames[1] = ConverterFrame( container, 'Celsius', TemperatureConverter.celsius_to_fahrenheit) self.change_frame() def change_frame(self): frame = self.frames[self.selected_value.get()] frame.reset() frame.tkraise() class App(tk.Tk): def __init__(self): super().__init__() self.title('Temperature Converter') self.geometry('480x240') self.resizable(False, False) if __name__ == "__main__": app = App() ControlFrame(app) app.mainloop()
The running results are as follows:
The above is the detailed content of How to implement Frame switching in Python Tkinter GUI programming. For more information, please follow other related articles on the PHP Chinese website!

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.