


How to improve MySQL performance by using semi-synchronous replication
With the continuous development of the Internet, the explosive growth of data volume has made databases become the core components of many websites, applications and systems. As an open source relational database management system, MySQL has become the preferred database widely used in the industry due to its advantages in stability, reliability and cost-effectiveness.
However, in the actual production environment, as the amount of data increases, MySQL's performance problems are gradually exposed. Especially in large-scale enterprise applications, the reading and writing of massive data, high concurrent requests, and data reliability all place high demands on MySQL's performance.
In order to meet these needs, MySQL provides the semi-synchronous replication (Semi-Synchronous Replication, referred to as Semi-Sync) function. By using semi-synchronous replication, the performance and reliability of MySQL can be improved. This article will introduce the principles, advantages and usage of semi-synchronous replication.
1. The principle of semi-synchronous replication
MySQL replication refers to the process of synchronizing data from one MySQL instance (Master) to another MySQL instance (Slave). When a transaction is executed on the Master, it will be written to the Master's binlog and transmitted to the Slave through the network for execution.
Semi-synchronous replication is based on ordinary asynchronous replication and adds an additional synchronous confirmation process. When a transaction is executed on the Master and successfully written to the Master's binlog, the Master will wait for at least one Slave to confirm that the transaction has been successfully written to its corresponding relay log. Only after receiving confirmation from at least one Slave, the Master will consider that the transaction has been successfully copied to the Slave, and then notify the client that the transaction has been submitted.
In semi-synchronous replication, Master and Slave interact through the network. When a transaction on the Master is completed, the Master will send a transaction confirmation request to all connected Slaves and wait for at least one Slave to respond to the request. If the waiting time exceeds the set timeout, the Master will give up waiting.
2. Advantages of semi-synchronous replication
Compared with ordinary asynchronous replication, semi-synchronous replication has the following advantages:
- Improving the reliability of data
In ordinary asynchronous replication, since the Slave executes transactions on the Master asynchronously, there may be data loss. For example, when the Master is writing a transaction, the Master crashes or other abnormal conditions cause the transaction not to be written to the binlog. At this time, even if the transaction is executed, the binlog of the transaction does not exist on the Slave. resulting in data loss.
In semi-synchronous replication, after receiving the transaction confirmation request from the Master, the Slave will immediately write the transaction to its own relay log. Only when the slave writes successfully, the master will consider that the transaction has been successfully copied to the slave, thereby ensuring the reliability of the data.
- Improve read performance
In ordinary asynchronous replication, due to the delay in the asynchronous transmission of data between Master and Slave, and the delay time of each Slave may are different, so the data read on the Slave may be out of date.
In semi-synchronous replication, when the Master receives a response from at least one Slave, it will consider that the transaction has been copied to the Slave and submitted. At this time, reading the data on the Slave is more reliable, thereby improving improve read performance.
- Enhance load balancing capabilities
Semi-synchronous replication can improve load balancing capabilities. In semi-synchronous replication, due to the read-write separation strategy, some requests only need to be performed on the Slave, which reduces the Master's read operations, thus greatly reducing the Master's read burden. At the same time, when the Master performs a write operation and waits for a response from at least one Slave, the network IO can be utilized, which means that network resources are fully utilized.
3. How to use semi-synchronous replication
Semi-synchronous replication is available starting from MySQL 5.5.9 and requires corresponding configuration on the Master and Slave. The following is the specific configuration method.
Configuration on the Master:
- First, you need to ensure that all connected Slaves support Semi-Sync. Use the show slave statusG command to check the support status of the currently connected Slave.
- Enable the semi-synchronous replication function and set the parameter to "1". The setting method is as follows:
mysql> SET GLOBAL rpl_semi_sync_master_enabled = 1;
- Set the number of Slaves required to meet semi-synchronous replication. Set the parameter to "1" or "2", indicating that at least 1 or 2 Slave is required for confirmation. Here we take the setting that requires at least 1 Slave confirmation as an example.
mysql> SET GLOBAL rpl_semi_sync_master_wait_for_slave_count = 1;
Configuration on Slave:
- Enable the semi-synchronous replication function and set its status to "ON". The setting method is as follows:
mysql> SET GLOBAL rpl_semi_sync_slave_enabled = ON;
- Set Slave as an intermediary to handle communication between Master and other Slaves. The setting method is as follows:
mysql> CHANGE MASTER TO MASTER_HOST='xxxx', MASTER_PORT=3306, MASTER_USER='user', MASTER_PASSWORD='password', MASTER_USE_SEMI_SYNC = SLAVE;
You need to replace "xxxx", "user", and "password" with the actual Master's IP address, username, and password.
After the configuration is completed, you can check the status of semi-synchronous replication through the following command:
mysql> SHOW GLOBAL STATUS LIKE 'Rpl_semi%';
Among them, the value of Rpl_semi_sync_master_status is ON, which means that the Master has turned on the semi-synchronous replication function, and the value of Rpl_semi_sync_slave_status If it is ON, it means that the slave has turned on the semi-synchronous replication function.
4. Summary
By using semi-synchronous replication, the performance and reliability of MySQL can be improved. Therefore, in actual production environments, we should use semi-synchronous replication technology as much as possible to ensure data reliability and improve MySQL's read and write performance. At the same time, when using semi-synchronous replication technology, you also need to pay attention to the details of the configuration file to ensure its correctness.
The above is the detailed content of How to improve MySQL performance by using semi-synchronous replication. For more information, please follow other related articles on the PHP Chinese website!

PHP is a server-side scripting language used for dynamic web development and server-side applications. 1.PHP is an interpreted language that does not require compilation and is suitable for rapid development. 2. PHP code is embedded in HTML, making it easy to develop web pages. 3. PHP processes server-side logic, generates HTML output, and supports user interaction and data processing. 4. PHP can interact with the database, process form submission, and execute server-side tasks.

PHP has shaped the network over the past few decades and will continue to play an important role in web development. 1) PHP originated in 1994 and has become the first choice for developers due to its ease of use and seamless integration with MySQL. 2) Its core functions include generating dynamic content and integrating with the database, allowing the website to be updated in real time and displayed in personalized manner. 3) The wide application and ecosystem of PHP have driven its long-term impact, but it also faces version updates and security challenges. 4) Performance improvements in recent years, such as the release of PHP7, enable it to compete with modern languages. 5) In the future, PHP needs to deal with new challenges such as containerization and microservices, but its flexibility and active community make it adaptable.

The core benefits of PHP include ease of learning, strong web development support, rich libraries and frameworks, high performance and scalability, cross-platform compatibility, and cost-effectiveness. 1) Easy to learn and use, suitable for beginners; 2) Good integration with web servers and supports multiple databases; 3) Have powerful frameworks such as Laravel; 4) High performance can be achieved through optimization; 5) Support multiple operating systems; 6) Open source to reduce development costs.

PHP is not dead. 1) The PHP community actively solves performance and security issues, and PHP7.x improves performance. 2) PHP is suitable for modern web development and is widely used in large websites. 3) PHP is easy to learn and the server performs well, but the type system is not as strict as static languages. 4) PHP is still important in the fields of content management and e-commerce, and the ecosystem continues to evolve. 5) Optimize performance through OPcache and APC, and use OOP and design patterns to improve code quality.

PHP and Python have their own advantages and disadvantages, and the choice depends on the project requirements. 1) PHP is suitable for web development, easy to learn, rich community resources, but the syntax is not modern enough, and performance and security need to be paid attention to. 2) Python is suitable for data science and machine learning, with concise syntax and easy to learn, but there are bottlenecks in execution speed and memory management.

PHP is used to build dynamic websites, and its core functions include: 1. Generate dynamic content and generate web pages in real time by connecting with the database; 2. Process user interaction and form submissions, verify inputs and respond to operations; 3. Manage sessions and user authentication to provide a personalized experience; 4. Optimize performance and follow best practices to improve website efficiency and security.

PHP uses MySQLi and PDO extensions to interact in database operations and server-side logic processing, and processes server-side logic through functions such as session management. 1) Use MySQLi or PDO to connect to the database and execute SQL queries. 2) Handle HTTP requests and user status through session management and other functions. 3) Use transactions to ensure the atomicity of database operations. 4) Prevent SQL injection, use exception handling and closing connections for debugging. 5) Optimize performance through indexing and cache, write highly readable code and perform error handling.

Using preprocessing statements and PDO in PHP can effectively prevent SQL injection attacks. 1) Use PDO to connect to the database and set the error mode. 2) Create preprocessing statements through the prepare method and pass data using placeholders and execute methods. 3) Process query results and ensure the security and performance of the code.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor