search
HomeBackend DevelopmentGolangGolang implements rabbitmq monitoring

We know that message queue is a commonly used architectural pattern to solve problems such as asynchronous processing and task distribution, and RabbitMQ is currently one of the most widely used message middleware. In practical applications, we may need to use Golang to implement RabbitMQ monitoring. This article will introduce how to use Golang to implement RabbitMQ monitoring.

Preparation

Before you start, you need to make sure that RabbitMQ has been installed. Since RabbitMQ depends on Erlang, Erlang also needs to be installed.

After the installation is complete, we need to install the Golang third-party package. Among them, the AMQP package is essential, which allows us to easily connect and operate RabbitMQ.

go get github.com/streadway/amqp

Code implementation

First, we need to connect to RabbitMQ. After the connection is successful, we need to declare an exchange named "test" and type "fanout". Exchange is an important part of message routing in RabbitMQ. It is responsible for receiving messages and distributing them to queues. In this case, we will declare an exchange called "test" and set its type to "fanout", which means that it will broadcast messages to all queues subscribed to it.

conn, err := amqp.Dial("amqp://guest:guest@localhost:5672/")
failOnError(err, "Failed to connect to RabbitMQ")
defer conn .Close()

ch, err := conn.Channel()
failOnError(err, "Failed to open a channel")
defer ch.Close()

err = ch.ExchangeDeclare(

"test",   // name
"fanout", // type
true,     // durable
false,    // auto-deleted
false,    // internal
false,    // no-wait
nil,      // arguments

)
failOnError(err, "Failed to declare an exchange")

Next, we need to create a new, non-persistent, with Queue with automatically generated name. Here we will use the names of the queues to bind them to the "test" exchange we just declared.

q, err := ch.QueueDeclare(

"",    // name
false, // durable
false, // delete when unused
true,  // exclusive
false, // no-wait
nil,   // arguments

)
failOnError(err, "Failed to declare a queue")

err = ch.QueueBind(

q.Name, // queue name
"",     // routing key
"test", // exchange
false,
nil,

)
failOnError(err, "Failed to bind a queue")

Now, RabbitMQ is ready and we can start listening for its messages. We can use the Consume function to implement message listening, which allows us to continuously receive messages from the queue and process them.

msgs, err := ch.Consume(

q.Name, // queue name
"",     // consumer
true,   // auto-ack
false,  // exclusive
false,  // no-local
false,  // no-wait
nil,    // args

)
failOnError(err, "Failed to register a consumer")

for msg := range msgs {

log.Printf("Received a message: %s", msg.Body)

}

In the above code, we use the ch.Consume() method to listen to the messages in the specified queue and output the message content by printing the log. It should be noted that we use an infinite loop to deploy message listening, which means that we will keep listening to the queue until the program is stopped or an error occurs.

The complete code is as follows:

package main

import (

"log"

"github.com/streadway/amqp"

)

func failOnError(err error, msg string) {

if err != nil {
    log.Fatalf("%s: %s", msg, err)
}

}

func main() {

conn, err := amqp.Dial("amqp://guest:guest@localhost:5672/")
failOnError(err, "Failed to connect to RabbitMQ")
defer conn.Close()

ch, err := conn.Channel()
failOnError(err, "Failed to open a channel")
defer ch.Close()

err = ch.ExchangeDeclare(
    "test",   // name
    "fanout", // type
    true,     // durable
    false,    // auto-deleted
    false,    // internal
    false,    // no-wait
    nil,      // arguments
)
failOnError(err, "Failed to declare an exchange")

q, err := ch.QueueDeclare(
    "",    // name
    false, // durable
    false, // delete when unused
    true,  // exclusive
    false, // no-wait
    nil,   // arguments
)
failOnError(err, "Failed to declare a queue")

err = ch.QueueBind(
    q.Name, // queue name
    "",     // routing key
    "test", // exchange
    false,
    nil,
)
failOnError(err, "Failed to bind a queue")

msgs, err := ch.Consume(
    q.Name, // queue name
    "",     // consumer
    true,   // auto-ack
    false,  // exclusive
    false,  // no-local
    false,  // no-wait
    nil,    // args
)
failOnError(err, "Failed to register a consumer")

for msg := range msgs {
    log.Printf("Received a message: %s", msg.Body)
}

}

Summary

This article introduces how to use Golang to implement rabbitmq To listen, first we need to connect to rabbitmq, declare an exchange, create a queue and bind the queue to the exchange, and finally use a consumer to listen to the messages in the queue. I hope this article can be helpful to developers who are using Golang for rabbitmq development.

The above is the detailed content of Golang implements rabbitmq monitoring. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How do I write mock objects and stubs for testing in Go?How do I write mock objects and stubs for testing in Go?Mar 10, 2025 pm 05:38 PM

This article demonstrates creating mocks and stubs in Go for unit testing. It emphasizes using interfaces, provides examples of mock implementations, and discusses best practices like keeping mocks focused and using assertion libraries. The articl

How do you write unit tests in Go?How do you write unit tests in Go?Mar 21, 2025 pm 06:34 PM

The article discusses writing unit tests in Go, covering best practices, mocking techniques, and tools for efficient test management.

How can I define custom type constraints for generics in Go?How can I define custom type constraints for generics in Go?Mar 10, 2025 pm 03:20 PM

This article explores Go's custom type constraints for generics. It details how interfaces define minimum type requirements for generic functions, improving type safety and code reusability. The article also discusses limitations and best practices

How do you use the pprof tool to analyze Go performance?How do you use the pprof tool to analyze Go performance?Mar 21, 2025 pm 06:37 PM

The article explains how to use the pprof tool for analyzing Go performance, including enabling profiling, collecting data, and identifying common bottlenecks like CPU and memory issues.Character count: 159

How can I use tracing tools to understand the execution flow of my Go applications?How can I use tracing tools to understand the execution flow of my Go applications?Mar 10, 2025 pm 05:36 PM

This article explores using tracing tools to analyze Go application execution flow. It discusses manual and automatic instrumentation techniques, comparing tools like Jaeger, Zipkin, and OpenTelemetry, and highlighting effective data visualization

Explain the purpose of Go's reflect package. When would you use reflection? What are the performance implications?Explain the purpose of Go's reflect package. When would you use reflection? What are the performance implications?Mar 25, 2025 am 11:17 AM

The article discusses Go's reflect package, used for runtime manipulation of code, beneficial for serialization, generic programming, and more. It warns of performance costs like slower execution and higher memory use, advising judicious use and best

How do you specify dependencies in your go.mod file?How do you specify dependencies in your go.mod file?Mar 27, 2025 pm 07:14 PM

The article discusses managing Go module dependencies via go.mod, covering specification, updates, and conflict resolution. It emphasizes best practices like semantic versioning and regular updates.

How do you use table-driven tests in Go?How do you use table-driven tests in Go?Mar 21, 2025 pm 06:35 PM

The article discusses using table-driven tests in Go, a method that uses a table of test cases to test functions with multiple inputs and outcomes. It highlights benefits like improved readability, reduced duplication, scalability, consistency, and a

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.