search
HomeBackend DevelopmentPython TutorialHow to use Python's asynchronous and scheduled tasks to improve program concurrency and execution efficiency?

Asynchronous tasks and scheduled tasks

For some operations in web applications, they may take a long time to complete, or their execution time cannot be determined. For these operations, if the user only needs to know that the server has received the request and does not need to get the execution result of the request immediately, then we can process them asynchronously. If the use of cache is the first priority for optimizing website performance, then asynchronousizing tasks that take time or whose execution time is uncertain is the second priority for optimizing website performance. Simply put, anything that can be postponed should not be done immediately.

In the previous chapter, we took sending text messages and uploading files to cloud storage as examples. Among these two operations, the former is an operation with uncertain time (because as the caller, we cannot determine the response time of the third-party platform), and the latter is a time-consuming operation (if the file is large or the third-party platform is unstable, it may cause It takes a long time to upload). Obviously, both operations can be asynchronous.

In Python projects, we can use multi-threading or use the third-party library Celery to achieve asynchronous processing.

Use Celery to achieve asynchronousization

Celery is a Python asynchronous task queue/message queue, which can easily complete the processing of asynchronous tasks. Using Celery, tasks can be distributed to multiple task executors, which can be a single process or multiple processes or multiple hosts. Celery also supports task priority, task result saving, task retry and other functions.

Using Celery to implement asynchronousization requires the following steps:

Install Celery

pip install celery

Create a Celery in the project Application

from celery import Celery
app = Celery('tasks', broker='pyamqp://guest@localhost//')

Define tasks

@app.task
def add(x, y):
    return x + y

Call tasks in the project

result = add.delay(4, 4)
print(result.get(timeout=1))

Use multi-threading to achieve asynchronousization

threading## in Python # Modules can be used to create multi-threads. Using multi-threading, time-consuming tasks can be executed in new threads without affecting the execution of the main thread.

Using multi-threading to implement asynchronousization requires the following steps:

Import

threading module

import threading

Define a function as a task

def task():
    print('Hello from task')

Create a new thread and start it

t = threading.Thread(target=task)
t.start()

Timing task

Some tasks need to be executed at a specific time, then we need to use timing Task. There are multiple third-party libraries in Python that can be used to implement scheduled tasks, such as

schedule, APScheduler, etc. Let's take APScheduler as an example to explain how to implement scheduled tasks.

Using

APScheduler requires the following steps to implement scheduled tasks:

Installation

APScheduler

pip install apscheduler

Import

APScheduler Module

from apscheduler.schedulers.blocking import BlockingScheduler

Create a

BlockingScheduler instance and add tasks

def task():
    print('Hello from task')
scheduler = BlockingScheduler()
scheduler.add_job(task, 'interval', seconds=5)
scheduler.start()

The above code will be executed every 5 seconds A

task function.

Comparison between Celery and multi-threading

Although both Celery and multi-threading can implement asynchronous processing, there are some differences, advantages and disadvantages between them.

Advantages and disadvantages of Celery

Advantages:

  • Can distribute tasks to multiple task executors, thereby achieving task load balancing and improving Efficiency of task processing.

  • Supports functions such as task priority, task result saving, and task retry.

  • Supports multiple message transmission protocols, such as AMQP, Redis, RabbitMQ, etc.

  • Can be easily integrated into web frameworks such as Django and Flask.

Disadvantages:

  • The installation and configuration process may be cumbersome.

  • May increase system complexity.

Advantages and disadvantages of multi-threading

Advantages:

  • It is relatively simple to implement and does not require the installation of additional libraries.

  • Can quickly complete task processing on the local machine.

Disadvantages:

  • Tasks cannot be distributed to multiple task executors, so task load balancing cannot be achieved.

  • Functions such as task priority, task result saving, and task retry cannot be easily implemented.

  • may cause system performance degradation because multi-threading has limited concurrency performance.

Selection of scheduled tasks

In Python, there are multiple third-party libraries that can be used to implement scheduled tasks, such as

schedule, APScheduler etc. These libraries have their own advantages and disadvantages, and we can choose the appropriate library to implement scheduled tasks according to specific needs.

schedule library

  • is simple and easy to use. You only need to call the

    schedule function to implement scheduled tasks.

  • Cannot achieve load balancing of tasks and concurrent execution of tasks.

APScheduler library

  • Supports multiple schedulers, such as BlockingScheduler, BackgroundScheduler, AsyncIOScheduler, etc.

  • Supports multiple triggers, such as date, interval, cron, interval_from_last, etc.

  • Supports concurrent execution of tasks and load balancing.

  • Can be easily integrated into web frameworks such as Django and Flask.

The above is the detailed content of How to use Python's asynchronous and scheduled tasks to improve program concurrency and execution efficiency?. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:亿速云. If there is any infringement, please contact admin@php.cn delete
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.