search
HomeBackend DevelopmentPython TutorialHow to use pyecharts to draw geographical charts in Python

Map Template Series

China Map

Shows all the provinces in China, a complete simple geographical figure of China, making it easier for you to understand the distribution of cities!

from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker

c = (
Map()
.add("城市", [list(z) for z in zip(Faker.provinces, Faker.values())], "china")
.set_global_opts(title_opts=opts.TitleOpts(title="中国地图"))
.render("中国地图.html")
)
print([list(z) for z in zip(Faker.provinces, Faker.values())])

How to use pyecharts to draw geographical charts in Python

Provincial data map (Chongqing map)

from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker
x=["巫山县","万州区","云阳县","奉节县"]
y=[123,560,456,362]
c = (
Map(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add("城市", [list(z) for z in zip(x,y)], "重庆")
.set_global_opts(
title_opts=opts.TitleOpts(title="重庆地图"), visualmap_opts=opts.VisualMapOpts(max_=560)
)
.render("重庆地图.html")
)

How to use pyecharts to draw geographical charts in Python

How to use pyecharts to draw geographical charts in Python

##Chinese cities Map data map (segmented type)

displays provinces in China, just provide data, displays segmented data buttons, and can also be controlled by the mouse, come and take a look!

from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker

c = (
Map(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add("城市", [list(z) for z in zip(Faker.provinces, Faker.values())], "china")
.set_global_opts(
title_opts=opts.TitleOpts(title="中国人口地图)"),
visualmap_opts=opts.VisualMapOpts(max_=200, is_piecewise=True),
)
.render("中国分段地图.html")
)

How to use pyecharts to draw geographical charts in Python

World Map

It should be noted that we need to know the English name of each country, and pay attention to the same language as the map() of pyecharts, otherwise it will not work .

The official comparison table is provided here, this is too powerful!

{
"Somalia": "索马里",
"Liechtenstein": "列支敦士登",
"Morocco": "摩洛哥",
"W. Sahara": "西撒哈拉",
"Serbia": "塞尔维亚",
"Afghanistan": "阿富汗",
"Angola": "安哥拉",
"Albania": "阿尔巴尼亚",
"Andorra": "安道尔共和国",
"United Arab Emirates": "阿拉伯联合酋长国",
"Argentina": "阿根廷",
"Armenia": "亚美尼亚",
"Australia": "澳大利亚",
"Austria": "奥地利",
"Azerbaijan": "阿塞拜疆",
"Burundi": "布隆迪",
"Belgium": "比利时",
"Benin": "贝宁",
"Burkina Faso": "布基纳法索",
"Bangladesh": "孟加拉国",
"Bulgaria": "保加利亚",
"Bahrain": "巴林",
"Bahamas": "巴哈马",
"Bosnia and Herz.": "波斯尼亚和黑塞哥维那",
"Belarus": "白俄罗斯",
"Belize": "伯利兹",
"Bermuda": "百慕大",
"Bolivia": "玻利维亚",
"Brazil": "巴西",
"Barbados": "巴巴多斯",
"Brunei": "文莱",
"Bhutan": "不丹",
"Botswana": "博茨瓦纳",
"Central African Rep.": "中非",
"Canada": "加拿大",
"Switzerland": "瑞士",
"Chile": "智利",
"China": "中国",
"Côte d'Ivoire": "科特迪瓦",
"Cameroon": "喀麦隆",
"Dem. Rep. Congo": "刚果民主共和国",
"Congo": "刚果",
"Colombia": "哥伦比亚",
"Cape Verde": "佛得角",
"Costa Rica": "哥斯达黎加",
"Cuba": "古巴",
"N. Cyprus": "北塞浦路斯",
"Cyprus": "塞浦路斯",
"Czech Rep.": "捷克",
"Germany": "德国",
"Djibouti": "吉布提",
"Denmark": "丹麦",
"Dominican Rep.": "多米尼加",
"Algeria": "阿尔及利亚",
"Ecuador": "厄瓜多尔",
"Egypt": "埃及",
"Eritrea": "厄立特里亚",
"Spain": "西班牙",
"Estonia": "爱沙尼亚",
"Ethiopia": "埃塞俄比亚",
"Finland": "芬兰",
"Fiji": "斐济",
"France": "法国",
"Gabon": "加蓬",
"United Kingdom": "英国",
"Georgia": "格鲁吉亚",
"Ghana": "加纳",
"Guinea": "几内亚",
"Gambia": "冈比亚",
"Guinea-Bissau": "几内亚比绍",
"Eq. Guinea": "赤道几内亚",
"Greece": "希腊",
"Grenada": "格林纳达",
"Greenland": "格陵兰",
"Guatemala": "危地马拉",
"Guam": "关岛",
"Guyana": "圭亚那",
"Honduras": "洪都拉斯",
"Croatia": "克罗地亚",
"Haiti": "海地",
"Hungary": "匈牙利",
"Indonesia": "印度尼西亚",
"India": "印度",
"Br. Indian Ocean Ter.": "英属印度洋领土",
"Ireland": "爱尔兰",
"Iran": "伊朗",
"Iraq": "伊拉克",
"Iceland": "冰岛",
"Israel": "以色列",
"Italy": "意大利",
"Jamaica": "牙买加",
"Jordan": "约旦",
"Japan": "日本",
"Siachen Glacier": "锡亚琴冰川",
"Kazakhstan": "哈萨克斯坦",
"Kenya": "肯尼亚",
"Kyrgyzstan": "吉尔吉斯坦",
"Cambodia": "柬埔寨",
"Korea": "韩国",
"Kuwait": "科威特",
"Lao PDR": "老挝",
"Lebanon": "黎巴嫩",
"Liberia": "利比里亚",
"Libya": "利比亚",
"Sri Lanka": "斯里兰卡",
"Lesotho": "莱索托",
"Lithuania": "立陶宛",
"Luxembourg": "卢森堡",
"Latvia": "拉脱维亚",
"Moldova": "摩尔多瓦",
"Madagascar": "马达加斯加",
"Mexico": "墨西哥",
"Macedonia": "马其顿",
"Mali": "马里",
"Malta": "马耳他",
"Myanmar": "缅甸",
"Montenegro": "黑山",
"Mongolia": "蒙古",
"Mozambique": "莫桑比克",
"Mauritania": "毛里塔尼亚",
"Mauritius": "毛里求斯",
"Malawi": "马拉维",
"Malaysia": "马来西亚",
"Namibia": "纳米比亚",
"New Caledonia": "新喀里多尼亚",
"Niger": "尼日尔",
"Nigeria": "尼日利亚",
"Nicaragua": "尼加拉瓜",
"Netherlands": "荷兰",
"Norway": "挪威",
"Nepal": "尼泊尔",
"New Zealand": "新西兰",
"Oman": "阿曼",
"Pakistan": "巴基斯坦",
"Panama": "巴拿马",
"Peru": "秘鲁",
"Philippines": "菲律宾",
"Papua New Guinea": "巴布亚新几内亚",
"Poland": "波兰",
"Puerto Rico": "波多黎各",
"Dem. Rep. Korea": "朝鲜",
"Portugal": "葡萄牙",
"Paraguay": "巴拉圭",
"Palestine": "巴勒斯坦",
"Qatar": "卡塔尔",
"Romania": "罗马尼亚",
"Russia": "俄罗斯",
"Rwanda": "卢旺达",
"Saudi Arabia": "沙特阿拉伯",
"Sudan": "苏丹",
"S. Sudan": "南苏丹",
"Senegal": "塞内加尔",
"Singapore": "新加坡",
"Solomon Is.": "所罗门群岛",
"Sierra Leone": "塞拉利昂",
"El Salvador": "萨尔瓦多",
"Suriname": "苏里南",
"Slovakia": "斯洛伐克",
"Slovenia": "斯洛文尼亚",
"Sweden": "瑞典",
"Swaziland": "斯威士兰",
"Seychelles": "塞舌尔",
"Syria": "叙利亚",
"Chad": "乍得",
"Togo": "多哥",
"Thailand": "泰国",
"Tajikistan": "塔吉克斯坦",
"Turkmenistan": "土库曼斯坦",
"Timor-Leste": "东帝汶",
"Tonga": "汤加",
"Trinidad and Tobago": "特立尼达和多巴哥",
"Tunisia": "突尼斯",
"Turkey": "土耳其",
"Tanzania": "坦桑尼亚",
"Uganda": "乌干达",
"Ukraine": "乌克兰",
"Uruguay": "乌拉圭",
"United States": "美国",
"Uzbekistan": "乌兹别克斯坦",
"Venezuela": "委内瑞拉",
"Vietnam": "越南",
"Vanuatu": "瓦努阿图",
"Yemen": "也门",
"South Africa": "南非",
"Zambia": "赞比亚",
"Zimbabwe": "津巴布韦",
"Aland": "奥兰群岛",
"American Samoa": "美属萨摩亚",
"Fr. S. Antarctic Lands": "南极洲",
"Antigua and Barb.": "安提瓜和巴布达",
"Comoros": "科摩罗",
"Curaçao": "库拉索岛",
"Cayman Is.": "开曼群岛",
"Dominica": "多米尼加",
"Falkland Is.": "马尔维纳斯群岛(福克兰)",
"Faeroe Is.": "法罗群岛",
"Micronesia": "密克罗尼西亚",
"Heard I. and McDonald Is.": "赫德岛和麦克唐纳群岛",
"Isle of Man": "曼岛",
"Jersey": "泽西岛",
"Kiribati": "基里巴斯",
"Saint Lucia": "圣卢西亚",
"N. Mariana Is.": "北马里亚纳群岛",
"Montserrat": "蒙特塞拉特",
"Niue": "纽埃",
"Palau": "帕劳",
"Fr. Polynesia": "法属波利尼西亚",
"S. Geo. and S. Sandw. Is.": "南乔治亚岛和南桑威奇群岛",
"Saint Helena": "圣赫勒拿",
"St. Pierre and Miquelon": "圣皮埃尔和密克隆群岛",
"São Tomé and Principe": "圣多美和普林西比",
"Turks and Caicos Is.": "特克斯和凯科斯群岛",
"St. Vin. and Gren.": "圣文森特和格林纳丁斯",
"U.S. Virgin Is.": "美属维尔京群岛",
"Samoa": "萨摩亚"
}
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker

c = (
Map(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add("国家", [list(z) for z in zip(Faker.country, Faker.values())], "world")
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
title_opts=opts.TitleOpts(title="世界地图"),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
.render("世界地图.html")
)

How to use pyecharts to draw geographical charts in Python

China map with cities (detailed)

If you want to know the map of China, but also want to know the outline of the motherland, you can use this template Yo!

from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker

c = (
Map(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add(
"城市",
[list(z) for z in zip(Faker.guangdong_city, Faker.values())],
"china-cities",
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="中国地图(带城市)"),
visualmap_opts=opts.VisualMapOpts(),
)
.render("中国地图带城市.html")
)

How to use pyecharts to draw geographical charts in Python

China Continuous Data Map

The previous template is segmented, this is a continuous data map, it depends on what scenario you are doing data visualization in , whatever you need is available here!

from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker

c = (
Map(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add("城市", [list(z) for z in zip(Faker.provinces, Faker.values())], "china")
.set_global_opts(
title_opts=opts.TitleOpts(title="(标题)"),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
.render("连续数据地图.html")
)

How to use pyecharts to draw geographical charts in Python

Complex map viewing

How to use pyecharts to draw geographical charts in Python

How to use pyecharts to draw geographical charts in Python

The above is the detailed content of How to use pyecharts to draw geographical charts in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:亿速云. If there is any infringement, please contact admin@php.cn delete
Python vs. C  : Understanding the Key DifferencesPython vs. C : Understanding the Key DifferencesApr 21, 2025 am 12:18 AM

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Python vs. C  : Which Language to Choose for Your Project?Python vs. C : Which Language to Choose for Your Project?Apr 21, 2025 am 12:17 AM

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

Reaching Your Python Goals: The Power of 2 Hours DailyReaching Your Python Goals: The Power of 2 Hours DailyApr 20, 2025 am 12:21 AM

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Maximizing 2 Hours: Effective Python Learning StrategiesMaximizing 2 Hours: Effective Python Learning StrategiesApr 20, 2025 am 12:20 AM

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Choosing Between Python and C  : The Right Language for YouChoosing Between Python and C : The Right Language for YouApr 20, 2025 am 12:20 AM

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python vs. C  : A Comparative Analysis of Programming LanguagesPython vs. C : A Comparative Analysis of Programming LanguagesApr 20, 2025 am 12:14 AM

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

2 Hours a Day: The Potential of Python Learning2 Hours a Day: The Potential of Python LearningApr 20, 2025 am 12:14 AM

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.