search
HomeBackend DevelopmentPython TutorialWhat interesting things can be accomplished with ten lines of Python code?

Let’s take a look at what interesting functions we can achieve with no more than 10 lines of code.

1. Generate QR code

QR code is also called two-dimensional barcode. The common two-dimensional code is QR Code. The full name of QR is Quick Response. It is a super popular mobile device in recent years. A popular coding method, and generating a QR code is also very simple. In Python, we can generate a QR code through the MyQR module. To generate a QR code, we only need 2 lines of code. We first install the MyQR module. Here we choose domestic source download:

pip install qrcode

After the installation is completed, we can start writing code:

import qrcode

text = input(输入文字或URL:)
# 设置URL必须添加http://
img =qrcode.make(text)
img.save()
#保存图片至本地目录,可以设定路径
img.show()

After we execute the code, a QR code will be generated under the project. Of course, we can also enrich the QR code:

Let’s install the MyQR module first

pip installmyqr
def gakki_code():
version, level, qr_name = myqr.run(
words=https://520mg.com/it/#/main/2,
# 可以是字符串,也可以是网址(前面要加http(s)://)
version=1,# 设置容错率为最高
level='H',
# 控制纠错水平,范围是L、M、Q、H,从左到右依次升高
picture=gakki.gif,
# 将二维码和图片合成
colorized=True,# 彩色二维码
contrast=1.0, 
 # 用以调节图片的对比度,1.0 表示原始图片,更小的值表示更低对比度,更大反之。默认为1.0
brightness=1.0,
# 用来调节图片的亮度,其余用法和取值同上
save_name=gakki_code.gif,
# 保存文件的名字,格式可以是jpg,png,bmp,gif
save_dir=os.getcwd()# 控制位置

)
 gakki_code()

The rendering is as follows:

十行 Python 代码能实现哪些有趣功能?

##In addition, MyQR also supports dynamic picture.

2. Generate word cloud

Word cloud is also called word cloud. It is a visual prominent presentation of "keywords" that appear frequently in text data, forming a rendering of keywords. A cloud-like color picture is formed, so that the main meaning of the text data can be understood at a glance.

But as an old coder, I still like to use code to generate my own word cloud. Is it complicated? Will it take a long time? Many texts have introduced various methods, but in fact only 10 lines of python code are needed.

Install the necessary libraries first

pip install wordcloud
pip install jieba
pip install matplotlib
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import jieba

text_from_file_with_apath = open('/Users/hecom/23tips.txt').read()

wordlist_after_jieba = jieba.cut(text_from_file_with_apath, cut_all = True)
wl_space_split =.join(wordlist_after_jieba)

my_wordcloud = WordCloud().generate(wl_space_split)

plt.imshow(my_wordcloud)
plt.axis(off)
plt.show()

That’s all, the generated word cloud is like this:

十行 Python 代码能实现哪些有趣功能?

Read these 10 lines of code :

1~3 lines import the drawing library matplotlib, word cloud generation library wordcloud and jieba's word segmentation library respectively;

4 lines read local files, in the code The text used is "Two or three things about R&D management in the eyes of Lao Cao" in this public account.

Line 5~6, use jieba to segment the words, and separate the results of the word segmentation with spaces;

Line 7, generate a word cloud for the text after word segmentation;

In lines 8 to 10, use pyplot to display the word cloud diagram.

This is one of the reasons why I like python, it is simple and clear.

3. Batch cutout

The implementation of cutout requires the help of Baidu Feipiao's deep learning tool paddlepaddle. We need to install two modules to quickly implement batch cutout. Chapter 1 One is PaddlePaddle:

python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple

and the other is paddlehub model library:

pip install -i https://mirror.baidu.com/pypi/simple paddlehub

For more detailed installation information, please see the official website of PaddlePaddle: https://www.paddlepaddle.org.cn/

Next we only need 5 lines of code to achieve batch cutout:

import os, paddlehub as hub
humanseg = hub.Module(name='deeplabv3p_xception65_humanseg')# 加载模型
path = 'D:/CodeField/Workplace/PythonWorkplace/GrapImage/'# 文件目录
files = [path + i for i in os.listdir(path)]# 获取文件列表
results = humanseg.segmentation(data={'image':files})# 抠图

The cutout effect is as follows:

十行 Python 代码能实现哪些有趣功能?

The left side It is the original image, and the right side is the cutout image filled with yellow background.

4. Text emotion recognition

In front of paddlepaddle, natural language processing has become very simple. To realize text emotion recognition, we also need to install PaddlePaddle and Paddlehub. For specific installation, please refer to Part 3. Then comes our code part:

import paddlehub as hub
senta = hub.Module(name='senta_lstm')# 加载模型
sentence = [# 准备要识别的语句
'你真美', '你真丑', '我好难过', '我不开心', '这个游戏好好玩', '什么垃圾游戏',
]
results = senta.sentiment_classify(data={text:sentence})# 情绪识别
# 输出识别结果
for result in results:
print(result)

The recognition result is a dictionary list:

{'text': '你真美', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.9602, 'negative_probs': 0.0398}
{'text': '你真丑', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.0033, 'negative_probs': 0.9967}
{'text': '我好难过', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.5324, 'negative_probs': 0.4676}
{'text': '我不开心', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.1936, 'negative_probs': 0.8064}
{'text': '这个游戏好好玩', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.9933, 'negative_probs': 0.0067}
{'text': '什么垃圾游戏', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.0108, 'negative_probs': 0.9892}

The sentiment_key field contains emotional information. For detailed analysis, please see Python natural language processing only requires 5 lines code.

5. Identify whether you are wearing a mask

This is also a product using PaddlePaddle. We installed PaddlePaddle and Paddlehub according to the above steps, and then started writing code:

import paddlehub as hub
# 加载模型
module = hub.Module(name='pyramidbox_lite_mobile_mask')
# 图片列表
image_list = ['face.jpg']
# 获取图片字典
input_dict = {'image':image_list}
# 检测是否带了口罩
module.face_detection(data=input_dict)

After executing the above program, the detection_result folder will be generated under the project, and the recognition results will be in it. The recognition effect is as follows:

十行 Python 代码能实现哪些有趣功能?

6. Simple information bombing

Python There are many ways to control input devices. We can use win32 or pynput modules. We can achieve the effect of information bombing through simple loop operations. Taking pynput as an example, we need to install the module first:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ pynput

Before writing the code, we need to manually obtain the coordinates of the input box:

from pynput import mouse
# 创建一个鼠标
m_mouse = mouse.Controller()
# 输出鼠标位置
print(m_mouse.position)

There may be a more efficient way, but I don't know how.

After obtaining it, we can record the coordinates and do not move the message window. Then we execute the following code and switch the window to the message page:

import time
from pynput import mouse, keyboard
time.sleep(5)
m_mouse = mouse.Controller()# 创建一个鼠标
m_keyboard = keyboard.Controller()# 创建一个键盘
m_mouse.position = (850, 670) # 将鼠标移动到指定位置
m_mouse.click(mouse.Button.left) # 点击鼠标左键
while(True):
m_keyboard.type('你好')# 打字
m_keyboard.press(keyboard.Key.enter)# 按下enter
m_keyboard.release(keyboard.Key.enter)# 松开enter
time.sleep(0.5)# 等待 0.5秒

I admit, this is more than 10 lines of code, and it is not high-end. Before using QQ, the effect of sending messages to the trumpet is as follows:

十行 Python 代码能实现哪些有趣功能?

7. Identify the text in the picture

We can use Tesseract to identify the text in the picture. It is very simple to implement in Python, but downloading files and configuring environment variables in the early stage is a bit cumbersome, so this article only shows the code:

import pytesseract
from PIL import Image
img = Image.open('text.jpg')
text = pytesseract.image_to_string(img)
print(text)

其中text就是识别出来的文本。如果对准确率不满意的话,还可以使用百度的通用文字接口。

八、简单的小游戏

从一些小例子入门感觉效率很高。

import random
print(1-100数字猜谜游戏!)
num = random.randint(1,100)
guess =guess

i = 0
while guess != num:
i += 1
guess = int(input(请输入你猜的数字:))

if guess == num:
print(恭喜,你猜对了!)
elif guess < num:
print(你猜的数小了...)
else:
print(你猜的数大了...)

print(你总共猜了%d %i + 次)

猜数小案例当着练练手。

以上代码,大家可以敲一下非常有趣,也很适合小白入手。

The above is the detailed content of What interesting things can be accomplished with ten lines of Python code?. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
Nuitka简介:编译和分发Python的更好方法Nuitka简介:编译和分发Python的更好方法Apr 13, 2023 pm 12:55 PM

译者 | 李睿审校 | 孙淑娟随着Python越来越受欢迎,其局限性也越来越明显。一方面,编写Python应用程序并将其分发给没有安装Python的人员可能非常困难。解决这一问题的最常见方法是将程序与其所有支持库和文件以及Python运行时打包在一起。有一些工具可以做到这一点,例如PyInstaller,但它们需要大量的缓存才能正常工作。更重要的是,通常可以从生成的包中提取Python程序的源代码。在某些情况下,这会破坏交易。第三方项目Nuitka提供了一个激进的解决方案。它将Python程序编

我创建了一个由 ChatGPT API 提供支持的语音聊天机器人,方法请收下我创建了一个由 ChatGPT API 提供支持的语音聊天机器人,方法请收下Apr 07, 2023 pm 11:01 PM

今天这篇文章的重点是使用 ChatGPT API 创建私人语音 Chatbot Web 应用程序。目的是探索和发现人工智能的更多潜在用例和商业机会。我将逐步指导您完成开发过程,以确保您理解并可以复制自己的过程。为什么需要不是每个人都欢迎基于打字的服务,想象一下仍在学习写作技巧的孩子或无法在屏幕上正确看到单词的老年人。基于语音的 AI Chatbot 是解决这个问题的方法,就像它如何帮助我的孩子要求他的语音 Chatbot 给他读睡前故事一样。鉴于现有可用的助手选项,例如,苹果的 Siri 和亚马

ChatGPT 的五大功能可以帮助你提高代码质量ChatGPT 的五大功能可以帮助你提高代码质量Apr 14, 2023 pm 02:58 PM

ChatGPT 目前彻底改变了开发代码的方式,然而,大多数软件开发人员和数据专家仍然没有使用 ChatGPT 来改进和简化他们的工作。这就是为什么我在这里概述 5 个不同的功能,以提高我们的日常工作速度和质量。我们可以在日常工作中使用它们。现在,我们一起来了解一下吧。注意:切勿在 ChatGPT 中使用关键代码或信息。01.生成项目代码的框架从头开始构建新项目时,ChatGPT 是我的秘密武器。只需几个提示,它就可以生成我需要的代码框架,包括我选择的技术、框架和版本。它不仅为我节省了至少一个小时

解决Batch Norm层等短板的开放环境解决方案解决Batch Norm层等短板的开放环境解决方案Apr 26, 2023 am 10:01 AM

测试时自适应(Test-TimeAdaptation,TTA)方法在测试阶段指导模型进行快速无监督/自监督学习,是当前用于提升深度模型分布外泛化能力的一种强有效工具。然而在动态开放场景中,稳定性不足仍是现有TTA方法的一大短板,严重阻碍了其实际部署。为此,来自华南理工大学、腾讯AILab及新加坡国立大学的研究团队,从统一的角度对现有TTA方法在动态场景下不稳定原因进行分析,指出依赖于Batch的归一化层是导致不稳定的关键原因之一,另外测试数据流中某些具有噪声/大规模梯度的样本

摔倒检测-完全用ChatGPT开发,分享如何正确地向ChatGPT提问摔倒检测-完全用ChatGPT开发,分享如何正确地向ChatGPT提问Apr 07, 2023 pm 03:06 PM

哈喽,大家好。之前给大家分享过摔倒识别、打架识别​,今天以摔倒识别​为例,我们看看能不能完全交给ChatGPT来做。让ChatGPT​来做这件事,最核心的是如何向ChatGPT​提问,把问题一股脑的直接丢给ChatGPT​,如:用 Python 写个摔倒检测代码 是不可取的, 而是要像挤牙膏一样,一点一点引导ChatGPT​得到准确的答案,从而才能真正让ChatGPT提高我们解决问题的效率。今天分享的摔倒识别​案例,与ChatGPT​对话的思路清晰,代码可用度高,按照GPT​返回的结果完全可以开

17 个可以实现高效工作与在线赚钱的 AI 工具网站17 个可以实现高效工作与在线赚钱的 AI 工具网站Apr 11, 2023 pm 04:13 PM

自 2020 年以来,内容开发领域已经感受到人工智能工具的存在。1.Jasper AI网址:https://www.jasper.ai在可用的 AI 文案写作工具中,Jasper 作为那些寻求通过内容生成赚钱的人来讲,它是经济实惠且高效的选择之一。该工具精通短格式和长格式内容均能完成。Jasper 拥有一系列功能,包括无需切换到模板即可快速生成内容的命令、用于创建文章的高效长格式编辑器,以及包含有助于创建各种类型内容的向导的内容工作流,例如,博客文章、销售文案和重写。Jasper Chat 是该

为什么特斯拉的人形机器人长得并不像人?一文了解恐怖谷效应对机器人公司的影响为什么特斯拉的人形机器人长得并不像人?一文了解恐怖谷效应对机器人公司的影响Apr 14, 2023 pm 11:13 PM

1970年,机器人专家森政弘(MasahiroMori)首次描述了「恐怖谷」的影响,这一概念对机器人领域产生了巨大影响。「恐怖谷」效应描述了当人类看到类似人类的物体,特别是机器人时所表现出的积极和消极反应。恐怖谷效应理论认为,机器人的外观和动作越像人,我们对它的同理心就越强。然而,在某些时候,机器人或虚拟人物变得过于逼真,但又不那么像人时,我们大脑的视觉处理系统就会被混淆。最终,我们会深深地陷入一种对机器人非常消极的情绪状态里。森政弘的假设指出:由于机器人与人类在外表、动作上相似,所以人类亦会对

如何使用Azure Bot Services创建聊天机器人的分步说明如何使用Azure Bot Services创建聊天机器人的分步说明Apr 11, 2023 pm 06:34 PM

译者 | 李睿​审校 | 孙淑娟​信使、网络服务和其他软件都离不开机器人(bot)。而在软件开发和应用中,机器人是一种应用程序,旨在自动执行(或根据预设脚本执行)响应用户请求创建的操作。在本文中, NIX United公司的.NET​开发人员Daniil Mikhov介绍了使用微软Azure Bot Services创建聊天机器人的一个例子。本文将对想要使用该服务开发聊天机器人的开发人员有所帮助。 为什么使用Azure Bot Services? ​在Azure Bot Services上开发聊

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)