Numpy is a core module of Python scientific computing. It provides very efficient array objects, as well as tools for working with these array objects. A Numpy array consists of many values, all of the same type.
Python's core library provides List lists. Lists are one of the most common Python data types, and they can be resized and contain elements of different types, which is very convenient.
So what is the difference between List and Numpy Array? Why do we need to use Numpy Array when processing big data? The answer is performance.
Numpy data structures perform better in the following aspects:
1. Memory size—Numpy data structures take up less memory.
2. Performance - The bottom layer of Numpy is implemented in C language, which is faster than lists.
3. Operation methods - built-in optimized algebraic operations and other methods.
The following explains the advantages of Numpy arrays over Lists in big data processing.
1. Smaller memory usage
If you use Numpy arrays instead of Lists appropriately, you can reduce your memory usage by 20 times.
For Python's native List, since every time a new object is added, 8 bytes are needed to reference the new object, and the new object itself occupies 28 bytes (taking integers as an example). So the size of the list can be calculated with the following formula:
64 8 * len(lst) len(lst) * 28 bytes
while using Numpy , which can reduce a lot of space occupied. For example, a Numpy integer Array of length n requires:
96 len(a) * 8 bytes
It can be seen that the larger the array, the more money you save The more memory space there is. Assuming your array has 1 billion elements, then the difference in memory usage will be on the GB level.
2. Faster, built-in calculation method
Run the following script, which also generates two arrays of a certain dimension and adds them together. You can see the native List and Numpy Array. performance gap.
import time import numpy as np size_of_vec = 1000 def pure_python_version(): t1 = time.time() X = range(size_of_vec) Y = range(size_of_vec) Z = [X[i] + Y[i] for i in range(len(X)) ] return time.time() - t1 def numpy_version(): t1 = time.time() X = np.arange(size_of_vec) Y = np.arange(size_of_vec) Z = X + Y return time.time() - t1 t1 = pure_python_version() t2 = numpy_version() print(t1, t2) print("Numpy is in this example " + str(t1/t2) + " faster!")
The results are as follows:
0.00048732757568359375 0.0002491474151611328 Numpy is in this example 1.955980861244019 faster!
As you can see, Numpy is 1.95 times faster than native arrays.
If you are careful, you can also find that Numpy array can directly perform addition operations. Native arrays cannot do this. This is the advantage of Numpy's operation method.
We will do several more repeated experiments to prove that this performance advantage is durable.
import numpy as np from timeit import Timer size_of_vec = 1000 X_list = range(size_of_vec) Y_list = range(size_of_vec) X = np.arange(size_of_vec) Y = np.arange(size_of_vec) def pure_python_version(): Z = [X_list[i] + Y_list[i] for i in range(len(X_list)) ] def numpy_version(): Z = X + Y timer_obj1 = Timer("pure_python_version()", "from __main__ import pure_python_version") timer_obj2 = Timer("numpy_version()", "from __main__ import numpy_version") print(timer_obj1.timeit(10)) print(timer_obj2.timeit(10)) # Runs Faster! print(timer_obj1.repeat(repeat=3, number=10)) print(timer_obj2.repeat(repeat=3, number=10)) # repeat to prove it!
The results are as follows:
0.0029753120616078377 0.00014940369874238968 [0.002683573868125677, 0.002754641231149435, 0.002803879790008068] [6.536301225423813e-05, 2.9387418180704117e-05, 2.9171351343393326e-05]
It can be seen that the second output time is always much smaller, which proves that this performance advantage is persistent.
So, if you are doing some big data research, such as financial data and stock data, using Numpy can save you a lot of memory space and have more powerful performance.
References:https://www.php.cn/link/5cce25ff8c3ce169488fe6c6f1ad3c97
Our article ends here, if you like Please continue to follow us for today’s Python practical tutorial.
The above is the detailed content of Why must Python big data use Numpy Array?. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 Linux new version
SublimeText3 Linux latest version

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software
