1. In the loading and drawing process of View, there is a choreographer class, mChoreographer.
mTraversalBarrier = mHandler.getLooper().postSyncBarrier();
Insert a synchronization barrier message into the MessageQueue, msg.target==null message, the return value mTraversalBarrier is an int token value.
void scheduleTraversals() { if (!mTraversalScheduled) { mTraversalScheduled = true; //向消息队列插入一个同步屏障的消息。msg.target==null的消息 mTraversalBarrier = mHandler.getLooper().postSyncBarrier(); mChoreographer.postCallback( Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null); } }
The mChoreographer.postCallback() method will execute the code in mTraversalRunnable.
mHandler.getLooper().removeSyncBarrier(mTraversalBarrier);
This will remove the synchronization barrier message in the MessageQueue based on the token value generated above.
final TraversalRunnable mTraversalRunnable = new TraversalRunnable(); final class TraversalRunnable implements Runnable { @Override public void run() { doTraversal(); } } void doTraversal() { if (mTraversalScheduled) { mTraversalScheduled = false; //移除同步屏障消息 mHandler.getLooper().removeSyncBarrier(mTraversalBarrier); //在这个方法中会调用 measure layout draw,view的绘制绘制流程的方法 performTraversals(); } }
Let’s look at this line of code mHandler.getLooper().postSyncBarrier() to see how the system handles it.
Obtained a Message without a handler set.
int enqueueSyncBarrier(long when) { // Enqueue a new sync barrier token. // We don't need to wake the queue because the purpose of a barrier is to stall it. synchronized (this) { final int token = mNextBarrierToken++; // 这个msg.target没有被赋值 final Message msg = Message.obtain(); msg.markInUse(); msg.when = when; msg.arg1 = token; Message prev = null; Message p = mMessages; if (when != 0) { while (p != null && p.when <= when) { prev = p; p = p.next; } } if (prev != null) { // invariant: p == prev.next msg.next = p; prev.next = msg; } else { msg.next = p; mMessages = msg; } return token; } }
Normally we send messages through the handler, and the handler is not allowed to be empty.
boolean enqueueMessage(Message msg, long when) { if (msg.target == null) { throw new IllegalArgumentException("Message must have a target."); } ........... }
Why does the system send a message with an empty handler?
Let’s first look at what mChoreographer did after sending the synchronization barrier message?
Another asynchronous message was sent: msg.setAsynchronous(true). The handler of this message is not null.
private void postCallbackDelayedInternal(int callbackType, Object action, Object token, long delayMillis) { synchronized (mLock) { final long now = SystemClock.uptimeMillis(); final long dueTime = now + delayMillis; mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token); if (dueTime <= now) { scheduleFrameLocked(now); } else { Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action); msg.arg1 = callbackType; //将消息设置为异步消息 msg.setAsynchronous(true); mHandler.sendMessageAtTime(msg, dueTime); } } }
Next, let’s take a look at how MessageQueue removes messages and how to process this synchronization barrier message.
Message next() { synchronized (this) { // Try to retrieve the next message. Return if found. final long now = SystemClock.uptimeMillis(); Message prevMsg = null; Message msg = mMessages; //如果msg.target==null说明我们已经向消息队里中插入了一条屏障消息。 //此时会进入到这个循环中,找到msg.isAsynchronous==true的异步消息。 //通常我们发送的都是同步消息isAsynchronous = false的,并且msg.target不能为null的。 if (msg != null && msg.target == null) { // Stalled by a barrier. Find the next asynchronous message in the queue. do { prevMsg = msg; msg = msg.next; } while (msg != null && !msg.isAsynchronous());//msg.isAsynchronous==true时结束循环,说明找到了这个异步消息。 } if (msg != null) {//找到了同步屏障的异步消息后,直接返回 if (now < msg.when) { // Next message is not ready. Set a timeout to wake up when it is ready. nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE); } else { // Got a message. mBlocked = false; if (prevMsg != null) { prevMsg.next = msg.next; } else { mMessages = msg.next; } msg.next = null; if (false) Log.v("MessageQueue", "Returning message: " + msg); return msg; } } else {//没有找到的话则进入休眠直到下一次被唤醒 // No more messages. nextPollTimeoutMillis = -1; } } }
When canceling, first determine whether msg.target is null, and then go through the while loop to find the message that msg.isAsynchronous() == true. That is the asynchronous message sent above. Usually the messages we send are synchronous messages, and msg.setAsynchronous(true); will not be set.
The purpose of the system is to process this asynchronous message first. All synchronization messages will be placed at the back, just like a barrier, so such an operation is called a synchronization barrier, and the processing of synchronization barrier messages has a higher priority.
Because the choreographer class mChoreographer is responsible for screen rendering, it needs to process signals from the bottom layer in a timely manner to ensure the frequency of interface refresh.
The above is the detailed content of Java Handler synchronization barrier example code analysis. For more information, please follow other related articles on the PHP Chinese website!

Java is widely used in enterprise-level applications because of its platform independence. 1) Platform independence is implemented through Java virtual machine (JVM), so that the code can run on any platform that supports Java. 2) It simplifies cross-platform deployment and development processes, providing greater flexibility and scalability. 3) However, it is necessary to pay attention to performance differences and third-party library compatibility and adopt best practices such as using pure Java code and cross-platform testing.

JavaplaysasignificantroleinIoTduetoitsplatformindependence.1)Itallowscodetobewrittenonceandrunonvariousdevices.2)Java'secosystemprovidesusefullibrariesforIoT.3)ItssecurityfeaturesenhanceIoTsystemsafety.However,developersmustaddressmemoryandstartuptim

ThesolutiontohandlefilepathsacrossWindowsandLinuxinJavaistousePaths.get()fromthejava.nio.filepackage.1)UsePaths.get()withSystem.getProperty("user.dir")andtherelativepathtoconstructthefilepath.2)ConverttheresultingPathobjecttoaFileobjectifne

Java'splatformindependenceissignificantbecauseitallowsdeveloperstowritecodeonceandrunitonanyplatformwithaJVM.This"writeonce,runanywhere"(WORA)approachoffers:1)Cross-platformcompatibility,enablingdeploymentacrossdifferentOSwithoutissues;2)Re

Java is suitable for developing cross-server web applications. 1) Java's "write once, run everywhere" philosophy makes its code run on any platform that supports JVM. 2) Java has a rich ecosystem, including tools such as Spring and Hibernate, to simplify the development process. 3) Java performs excellently in performance and security, providing efficient memory management and strong security guarantees.

JVM implements the WORA features of Java through bytecode interpretation, platform-independent APIs and dynamic class loading: 1. Bytecode is interpreted as machine code to ensure cross-platform operation; 2. Standard API abstract operating system differences; 3. Classes are loaded dynamically at runtime to ensure consistency.

The latest version of Java effectively solves platform-specific problems through JVM optimization, standard library improvements and third-party library support. 1) JVM optimization, such as Java11's ZGC improves garbage collection performance. 2) Standard library improvements, such as Java9's module system reducing platform-related problems. 3) Third-party libraries provide platform-optimized versions, such as OpenCV.

The JVM's bytecode verification process includes four key steps: 1) Check whether the class file format complies with the specifications, 2) Verify the validity and correctness of the bytecode instructions, 3) Perform data flow analysis to ensure type safety, and 4) Balancing the thoroughness and performance of verification. Through these steps, the JVM ensures that only secure, correct bytecode is executed, thereby protecting the integrity and security of the program.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
