search
HomeTechnology peripheralsAIChatGLM, the Tsinghua-based Gigabit base conversation model, has launched internal testing and is an open source single-card version of the model.

The release of ChatGPT has stirred up the entire AI field, and major technology companies, startups, and university teams are following suit. Recently, Heart of the Machine has reported on the research results of many startup companies and university teams.

Yesterday, another large-scale domestic AI dialogue model made its grand debut: ChatGLM, a company’s smart spectrum AI transformed from Tsinghua’s technological achievements and based on the GLM-130B 100 billion base model, is now open for invitations Internal testing.

It is worth mentioning that Zhipu AI has also open sourced the Chinese-English bilingual dialogue model ChatGLM-6B, which supports inference on a single consumer-grade graphics card.

ChatGLM, the Tsinghua-based Gigabit base conversation model, has launched internal testing and is an open source single-card version of the model.

#Internal beta application website: chatglm.cn

It is understood that the capability improvement of the current version of ChatGLM model mainly comes from the unique 100 billion base model GLM-130B. It is an architecture different from BERT, GPT-3 and T5. It is an autoregressive pre-training model containing multi-objective functions.

In August 2022, Tsinghua University and Zhipu AI opened the Chinese-English bilingual dense model GLM-130B with 130 billion parameters to the research community and industry. This model has some unique features Advantages:

  • Bilingual: Supports both Chinese and English;
  • High precision (English): in the public English natural language Better than GPT-3 175B (API: davinci, base model), OPT-175B and BLOOM-176B on the list of LAMBADA, MMLU and Big-bench-lite;
  • High accuracy (Chinese): Significantly better than ERNIE TITAN 3.0 260B and YUAN 1.0-245B on 7 zero-sample CLUE data sets and 5 zero-sample FewCLUE data sets;
  • Fast inference: First A 100 billion model that implements INT4 quantification, supporting fast and basically lossless inference with a 4-card 3090 or 8-card 2080Ti server;
  • Reproducibility: all results (more than 30 Each task) can be reproduced through our open source code and model parameters;
  • Cross-platform: supports domestic Haiguang DCU, Huawei Ascend 910 and Sunway processors and the United States Training and inference on NVIDIA chips.

Now, referring to the design ideas of ChatGPT, ChatGLM has injected code pre-training into the GLM-130B base model, through supervised fine-tuning (Supervised Fine-Tuning) and other technologies to achieve alignment of human intentions.

Heart of the Machine has obtained the internal beta invitation code. Here is a simple conversation with ChatGLM. The effect is as follows:

ChatGLM, the Tsinghua-based Gigabit base conversation model, has launched internal testing and is an open source single-card version of the model.

It can understand the actual meaning of "station CP":

Give ChatGLM a math problem to try:

ChatGLM, the Tsinghua-based Gigabit base conversation model, has launched internal testing and is an open source single-card version of the model.

Since I learned the linear equation of two variables, basic "chicken and rabbit in the same cage" problems like this can no longer trouble it:

ChatGLM, the Tsinghua-based Gigabit base conversation model, has launched internal testing and is an open source single-card version of the model.

Open Source ChatGLM-6B

ChatGLM-6B is an open source dialogue language model that supports bilingual question and answer in Chinese and English and is optimized for Chinese. The model is based on the General Language Model (GLM) architecture and has 6.2 billion parameters. Combined with model quantization technology, users can deploy it locally on consumer-grade graphics cards (a minimum of 6GB of video memory is required at the INT4 quantization level). ChatGLM-6B uses the same technology as ChatGLM and is optimized for Chinese Q&A and dialogue. After bilingual training in Chinese and English with about 1T identifiers, supplemented by supervised fine-tuning, feedback self-service, human feedback reinforcement learning and other technologies, the 6.2 billion parameter ChatGLM-6B, although not as large as the 100 billion model, has greatly reduced the inference cost and improved It has improved efficiency and can already generate answers that are quite consistent with human preferences.

Model open source address: https://github.com/THUDM/ChatGLM-6B

Specifically , ChatGLM-6B has the following characteristics:

  • # Sufficient bilingual pre-training in Chinese and English: ChatGLM-6B has trained a token amount of 1T on Chinese and English materials in a 1:1 ratio. , both bilingual.
  • Optimized model architecture and size: Drawing on GLM-130B training experience, the two-dimensional RoPE position encoding implementation is revised, using the traditional FFN structure. The parameter size of 6B (6.2 billion) also makes it possible for researchers and individual developers to fine-tune and deploy ChatGLM-6B themselves.
  • Lower deployment threshold: At FP16 half precision, ChatGLM-6B requires at least 13 GB of video memory for inference. Combined with model quantization technology, this requirement can be further reduced to 10GB (INT8 ) and 6GB (INT4), allowing ChatGLM-6B to be deployed on consumer-grade graphics cards.
  • Longer sequence length: Compared with GLM-10B (sequence length 1024), ChatGLM-6B has a sequence length of 2048, supporting longer conversations and applications.
  • Human intention alignment training: Supervised Fine-Tuning, Feedback Bootstrap, Reinforcement Learning from Human Feedback and other methods are used to make The model is beginning to have the ability to understand the intent of human instructions. The output format is markdown for easy display.

However, due to the small capacity of the ChatGLM-6B model, there are inevitably some limitations and shortcomings, including:

  • Relatively weak model memory and language capabilities. ChatGLM-6B may generate incorrect information when faced with many factual knowledge tasks, and it is not very good at solving logical problems (such as mathematics, programming).
  • May generate harmful illustrations or biased content: ChatGLM-6B is only a preliminary language model aligned with human intent and may generate harmful or biased content.
  • Weak multi-turn dialogue capability: ChatGLM-6B’s context understanding capability is not sufficient, and context loss may occur when faced with long answer generation and multi-turn dialogue scenarios. and misunderstanding situations.

#The GLM team stated that ChatGLM is still far behind the world's top large model research and products. In the future, it will continue to develop and open source updated versions of ChatGLM and related models. The GLM team also welcomes everyone to download ChatGLM-6B and conduct research and (non-commercial) application development based on it.

The above is the detailed content of ChatGLM, the Tsinghua-based Gigabit base conversation model, has launched internal testing and is an open source single-card version of the model.. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
从VAE到扩散模型:一文解读以文生图新范式从VAE到扩散模型:一文解读以文生图新范式Apr 08, 2023 pm 08:41 PM

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

普林斯顿陈丹琦:如何让「大模型」变小普林斯顿陈丹琦:如何让「大模型」变小Apr 08, 2023 pm 04:01 PM

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了Apr 08, 2023 pm 06:21 PM

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

解锁CNN和Transformer正确结合方法,字节跳动提出有效的下一代视觉Transformer解锁CNN和Transformer正确结合方法,字节跳动提出有效的下一代视觉TransformerApr 09, 2023 pm 02:01 PM

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

Stable Diffusion XL 现已推出—有什么新功能,你知道吗?Stable Diffusion XL 现已推出—有什么新功能,你知道吗?Apr 07, 2023 pm 11:21 PM

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

五年后AI所需算力超100万倍!十二家机构联合发表88页长文:「智能计算」是解药五年后AI所需算力超100万倍!十二家机构联合发表88页长文:「智能计算」是解药Apr 09, 2023 pm 07:01 PM

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:​https://spj.scien

​什么是Transformer机器学习模型?​什么是Transformer机器学习模型?Apr 08, 2023 pm 06:31 PM

译者 | 李睿审校 | 孙淑娟​近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

AI模型告诉你,为啥巴西最可能在今年夺冠!曾精准预测前两届冠军AI模型告诉你,为啥巴西最可能在今年夺冠!曾精准预测前两届冠军Apr 09, 2023 pm 01:51 PM

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool