search
HomeTechnology peripheralsAIThe global stock of high-quality language data is in short supply and cannot be ignored

As one of the three elements of artificial intelligence, data plays an important role.

But have you ever thought about: What if one day, all the data in the world is used up?

Actually, the person who asked this question definitely has no mental problem, because this day may be coming soon! ! !

Recently, researcher Pablo Villalobos and others published an article titled "Will We Run Out of Data?" The paper "Analysis of the Limitations of Dataset Scaling in Machine Learning" was published on arXiv.

Based on their previous analysis of data set size trends, they predicted the growth of data set sizes in the language and vision fields and estimated the development trend of the total stock of available unlabeled data in the next few decades. .

Their research shows that high-quality language data will be exhausted as early as 2026! The pace of machine learning development will also slow down as a result. It's really not optimistic.

Two methods are used in both directions, but the results are not optimistic

The research team of this paper consists of 11 researchers and 3 consultants, with members from all over the world, dedicated to shrinking AI Gap between technology development and AI strategy, and provide advice to key decision-makers on AI safety.

The global stock of high-quality language data is in short supply and cannot be ignored

Chinchilla is a new predictive computing optimization model proposed by researchers at DeepMind.

In fact, during previous experiments on Chinchilla, a researcher once suggested that "training data will soon become a bottleneck in expanding large language models."

So they analyzed the growth in the size of machine learning datasets for natural language processing and computer vision, and used two methods to extrapolate: using historical growth rates, and for the future The predicted computational budget is estimated to calculate the optimal data set size.

Prior to this, they have been collecting data on machine learning input trends, including some training data, etc., and also by estimating the total stock of unlabeled data available on the Internet in the next few decades. , to investigate data usage growth.

The global stock of high-quality language data is in short supply and cannot be ignored

Because historical forecast trends may be "misleading" by the abnormal growth in computing volume over the past decade, the research team also used Chinchilla scaling law to Estimate the size of the data set in the next few years to improve the accuracy of the calculation results.

Ultimately, the researchers used a series of probabilistic models to estimate the total inventory of English language and image data in the next few years and compared the predictions of training data set size and total data inventory. The results are as follows As shown in the figure.

The global stock of high-quality language data is in short supply and cannot be ignored

This shows that the growth rate of the data set will be much faster than the data storage.

Therefore, if the current trend continues, it will be inevitable that the data stock will be used up. The table below shows the median number of years to exhaustion at each intersection on the forecast curve.

The global stock of high-quality language data is in short supply and cannot be ignored

High-quality language data inventories may be exhausted by 2026 at the earliest.

In contrast, the situation of low-quality language data and image data is slightly better: the former will be used up between 2030 and 2050, and the latter will be used up between 2030 and 2060. between.

At the end of the paper, the research team concluded: If data efficiency is not significantly improved or new data sources are available, the growth trend of machine learning models that currently rely on the ever-expanding huge data sets is likely to slow down. slow.

Netizens: Worrying is unfounded, let’s find out more about Efficient Zero

However, in the comment area of ​​this article, most netizens think that the author is unfounded.

On Reddit, a netizen named ktpr said:

"What's wrong with self-supervised learning? If the tasks are well specified , it can even be combined to expand the data set size."

The global stock of high-quality language data is in short supply and cannot be ignored

A netizen named lostmsn was even more unkind. He said bluntly:

"You don't even understand Efficient Zero? I think the author has seriously lost touch with the times."

The global stock of high-quality language data is in short supply and cannot be ignored

Efficient Zero is a reinforcement learning algorithm that can efficiently sample, proposed by Dr. Gao Yang of Tsinghua University.

In the case of limited data volume, Efficient Zero has solved the performance problem of reinforcement learning to a certain extent, and has been verified on the Atari Game, a universal test benchmark for algorithms.

The global stock of high-quality language data is in short supply and cannot be ignored

On the blog of the author team of this paper, even they themselves admitted:

"All of our conclusions are based on the unrealistic assumption that current trends in machine learning data usage and production will continue without significant improvements in data efficiency."

"A more reliable model should take into account the improvement of machine learning data efficiency, the use of synthetic data, and other algorithmic and economic factors."

"So in practical terms, this This analysis has serious limitations. Model uncertainty is very high."

"However, overall, we still believe that by 2040, due to the lack of training data, machine learning models There is about a 20% chance that the expansion will slow down significantly."

The above is the detailed content of The global stock of high-quality language data is in short supply and cannot be ignored. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
解读CRISP-ML(Q):机器学习生命周期流程解读CRISP-ML(Q):机器学习生命周期流程Apr 08, 2023 pm 01:21 PM

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

人工智能的环境成本和承诺人工智能的环境成本和承诺Apr 08, 2023 pm 04:31 PM

人工智能(AI)在流行文化和政治分析中经常以两种极端的形式出现。它要么代表着人类智慧与科技实力相结合的未来主义乌托邦的关键,要么是迈向反乌托邦式机器崛起的第一步。学者、企业家、甚至活动家在应用人工智能应对气候变化时都采用了同样的二元思维。科技行业对人工智能在创建一个新的技术乌托邦中所扮演的角色的单一关注,掩盖了人工智能可能加剧环境退化的方式,通常是直接伤害边缘人群的方式。为了在应对气候变化的过程中充分利用人工智能技术,同时承认其大量消耗能源,引领人工智能潮流的科技公司需要探索人工智能对环境影响的

找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了Apr 08, 2023 pm 06:21 PM

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

条形统计图用什么呈现数据条形统计图用什么呈现数据Jan 20, 2021 pm 03:31 PM

条形统计图用“直条”呈现数据。条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来;从条形统计图中很容易看出各种数量的多少。条形统计图分为:单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的数据。

自动驾驶车道线检测分类的虚拟-真实域适应方法自动驾驶车道线检测分类的虚拟-真实域适应方法Apr 08, 2023 pm 02:31 PM

arXiv论文“Sim-to-Real Domain Adaptation for Lane Detection and Classification in Autonomous Driving“,2022年5月,加拿大滑铁卢大学的工作。虽然自主驾驶的监督检测和分类框架需要大型标注数据集,但光照真实模拟环境生成的合成数据推动的无监督域适应(UDA,Unsupervised Domain Adaptation)方法则是低成本、耗时更少的解决方案。本文提出对抗性鉴别和生成(adversarial d

数据通信中的信道传输速率单位是bps,它表示什么数据通信中的信道传输速率单位是bps,它表示什么Jan 18, 2021 pm 02:58 PM

数据通信中的信道传输速率单位是bps,它表示“位/秒”或“比特/秒”,即数据传输速率在数值上等于每秒钟传输构成数据代码的二进制比特数,也称“比特率”。比特率表示单位时间内传送比特的数目,用于衡量数字信息的传送速度;根据每帧图像存储时所占的比特数和传输比特率,可以计算数字图像信息传输的速度。

数据分析方法有哪几种数据分析方法有哪几种Dec 15, 2020 am 09:48 AM

数据分析方法有4种,分别是:1、趋势分析,趋势分析一般用于核心指标的长期跟踪;2、象限分析,可依据数据的不同,将各个比较主体划分到四个象限中;3、对比分析,分为横向对比和纵向对比;4、交叉分析,主要作用就是从多个维度细分数据。

聊一聊Python 实现数据的序列化操作聊一聊Python 实现数据的序列化操作Apr 12, 2023 am 09:31 AM

​在日常开发中,对数据进行序列化和反序列化是常见的数据操作,Python提供了两个模块方便开发者实现数据的序列化操作,即 json 模块和 pickle 模块。这两个模块主要区别如下:json 是一个文本序列化格式,而 pickle 是一个二进制序列化格式;json 是我们可以直观阅读的,而 pickle 不可以;json 是可互操作的,在 Python 系统之外广泛使用,而 pickle 则是 Python 专用的;默认情况下,json 只能表示 Python 内置类型的子集,不能表示自定义的

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),