


Due to the rapid development of visual generative models such as Stable Diffusion, high-fidelity face images can be automatically forged, creating an increasingly serious DeepFake problem.
With the emergence of large language models such as ChatGPT, a large number of fake articles can also be easily generated and maliciously spread false information.
To this end, a series of single-modal detection models have been designed to deal with the forgery of the above AIGC technology in image and text modalities. However, these methods cannot cope well with multi-modal fake news tampering in new forgery scenarios.
Specifically, in multi-modal media tampering, the faces of important figures in pictures of various news reports (the face of the French President in Figure 1) are replaced, and the text Key phrases or words have been tampered with (in Figure 1, the positive phrase "is welcome to" has been tampered with the negative phrase "is forced to resign").
This will change or cover up the identity of key news figures, as well as modify or mislead the meaning of news text, creating multi-modal fake news that is spread on a large scale on the Internet.
## Figure 1. This paper proposes the task of detecting and locating multi-modal media tampering (DGM4). Different from existing single-modal DeepFake detection tasks, DGM4 not only predicts whether the input image-text pair is true or false, but also attempts to detect more fine-grained tampering types and locate image tampered areas and text tampering. word. In addition to true and false binary classification, this task provides a more comprehensive explanation and deeper understanding of tamper detection.
Table 1: Proposed DGM4 versus existing image and text forgery detection Comparison of related tasks
Detecting and locating multi-modal media tampering tasksTo understand this new challenge, research from Harbin Institute of Technology (Shenzhen) and Nanyang Technological University The researchers proposed the task of detecting and locating multi-modal media tampering (DGM4), built and open sourced the DGM4 data set, and also proposed a multi-modal hierarchical tampering inference model. Currently, this work has been included in CVPR 2023.
On Article address: https://arxiv.org/abs /2304.02556
GitHub:https://github.com/rshaojimmy/MultiModal-DeepFake
Project homepage: https://rshaojimmy.github.io/Projects/MultiModal-DeepFake
As shown in Figure 1 and Table 1, detection And the difference between Detecting and Grounding Multi-Modal Media Manipulation (DGM4) and existing single-modal tampering detection is:
1) Different from existing DeepFake image detection and fake text detection methods that can only detect single-modal fake information, DGM4 requires simultaneous detection of multi-modality in image-text pairs. State tampering;
2) Unlike existing DeepFake detection that focuses on binary classification, DGM4 further considers locating image tampered areas and text tampered words. This requires the detection model to perform more comprehensive and in-depth reasoning for tampering between image-text modalities.
Detect and locate multi-modal media tampering data setIn order to support the research on DGM4, as shown in Figure 2, the contribution of this work Developed the world's firstdetection and location of multi-modal media tampering (DGM4) data set.
Figure 2. DGM4Dataset
DGM The 4 data set investigates 4 types of tampering, face replacement tampering (FS), face attribute tampering (FA), text replacement tampering (TS), and text attribute tampering (TA).
Figure 2 shows the overall statistical information of DGM4, including (a) the distribution of the number of tampering types; (b) the tampered areas of most images are small in size , especially for face attribute tampering; (c) text attribute tampering has fewer tampered words than text replacement tampering; (d) distribution of text sentiment scores; (e) number of samples for each tampering type.
This data generated a total of 230,000 image-text pair samples, including 77,426 original image-text pairs and 152,574 tampered sample pairs. The tampered sample pairs include 66722 face replacement tampering, 56411 face attribute tampering, 43546 text replacement tampering and 18588 text attribute tampering.
Multimodal hierarchical tampering inference model
This article believes that multimodal tampering will cause subtle semantic inconsistencies between modalities. Therefore, detecting the cross-modal semantic inconsistency of tampered samples by fusing and inferring semantic features between modalities is the main idea of this article to deal with DGM4.
Figure 3. The proposed multi-modal hierarchical tampering inference model HierArchical Multi-modal Manipulation rEasoning tRansformer (HAMMER)
Based on this idea, as shown in Figure 3, this article proposes a multi-modal hierarchical tampering inference model HierArchical Multi-modal Manipulation rEasoning tRansformer (HAMMER).
This model is built on the model architecture of multi-modal semantic fusion and reasoning based on the dual-tower structure, and integrates the detection and location of multi-modal tampering in a fine-grained and hierarchical manner through shallow Layer and deep tamper reasoning are implemented.
Specifically, as shown in Figure 3, the HAMMER model has the following two characteristics:
1) In shallow tampering inference , through Manipulation-Aware Contrastive Learning to align the single-modal semantic features of images and texts extracted by the image encoder and text encoder. At the same time, the single-modal embedded features use the cross-attention mechanism for information interaction, and a local patch attention aggregation mechanism (Local Patch Attentional Aggregation) is designed to locate the image tampering area;
2) In deep tamper reasoning, the modality-aware cross-attention mechanism in the multi-modal aggregator is used to further fuse multi-modal semantic features. On this basis, special multi-modal sequence tagging and multi-modal multi-label classification are performed to locate text tampered words and detect altered words. Fine-grained tampering types.
Experimental results
As shown below, the experimental results show that the HAMMER proposed by the research team can detect more accurately compared with multi-modal and single-modal detection methods and locating multimodal media tampering.
Figure 4. Visualization of multi-modal tamper detection and location results
Figure 5 . Model Tamper Detection Attention Visualization on Tampered Text
Figure 4 provides some visualization results of multi-modal tamper detection and localization, illustrating that HAMMER can accurately and simultaneously Tamper detection and localization tasks. Figure 5 provides the model attention visualization results on tampered words, further demonstrating that HAMMER performs multi-modal tampering detection and localization by focusing on image areas that are semantically inconsistent with the tampered text.
Summary
- This work proposes a new research topic: the task of detecting and locating multi-modal media tampering to deal with multi-modal fake news.
- This work contributes the first large-scale data set for detecting and locating multi-modal media tampering, and provides detailed and rich annotations for tamper detection and location. The team believes it can well help future research on multi-modal fake news detection.
- This work proposes a powerful multi-modal hierarchical tampering inference model as a good starting solution for this new topic.
The code and data set link of this work have been shared on the GitHub of this project. Everyone is welcome to Star this GitHub Repo and use the DGM4 data set and HAMMER Let’s study the DGM4 problem. The field of DeepFake is not only about single-modality detection of images, but also a broader multi-modal tampering detection problem that needs to be solved urgently!
The above is the detailed content of Harbin Institute of Technology and Nanyang Institute of Technology propose the world's first 'Multi-modal DeepFake Detection and Positioning' model: giving AIGC no place to hide fakes. For more information, please follow other related articles on the PHP Chinese website!

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:https://spj.scien

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Mac version
God-level code editing software (SublimeText3)

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
