


1. 为什么用Python实现?
最近想将一些PDF文件转换为Word文档,第一时间想到W某S系列都有Pdf文档转Word文档的功能,结果还要会员???这里针对不想付费的情况所设计的一套方案。
2. 模块安装
这里主要用到的第三方模块是pdf2docx,用下面的pip命令安装即可:
pip install pdf2docx
3. 模块介绍
pdf2docx是一个Python模块,可以用来将PDF文件转换成Word文档。它是基于Python的pdfminer和python-docx库开发的,可以在Windows、Linux和Mac系统上运行。
pdf2docx模块可以直接从PDF文件中提取文本和图片,并将其转换成可编辑的Word文档。它可以处理包含复杂布局和格式的PDF文件,并保留原始的字体、颜色、大小和格式等属性。
使用pdf2docx模块非常简单,只需要安装pdf2docx库并导入相应的函数即可。以下是一个简单的示例代码:
import pdf2docx # 将PDF文件转换成Word文档 pdf2docx.parse('example.pdf', 'example.docx')
在上述代码中,我们首先导入pdf2docx模块,然后使用parse函数将PDF文件example.pdf转换成Word文档example.docx。
pdf2docx模块还提供了一些其他的函数和选项,可以根据需要进行配置和使用。以下是一些常用的函数和选项:
parse:将PDF文件转换成Word文档parse_pages:将PDF文件中的一页转换成Word文档parse_images:将PDF文件中的图片提取出来parse_text:将PDF文件中的文本提取出来parse_layout:将PDF文件中的页面布局提取出来
pdf2docx模块还支持一些高级选项,如自定义字体、颜色、大小、格式等,可以根据需要进行配置和使用。
总结:pdf2docx是一个非常实用的Python模块,可以将PDF文件转换成可编辑的Word文档。它基于pdfminer和python-docx库开发,可以处理包含复杂布局和格式的PDF文件,并保留原始的字体、颜色、大小和格式等属性。使用pdf2docx模块非常简单,只需要安装pdf2docx库并导入相应的函数即可。
4. 需求
Python实现批量将PDF转Word文档j,用到pdf2docx和os模块。
5. 注意事项
1、PDF文档的后缀务必是“.pdf”,否则转换不成功
2、大部分的PDF文档都可用这个程序来转换,如果是图片生成的Pdf文档,则转换不成功,原因是要将图片里的文字转换成文档涉及到人工智能的知识,它已超出这个程序的能力范围。但也不用慌,遇到此情况,可以用QQ的文件助手来帮忙,此处不赘述。
6. 完整代码实现
下方代码只需要修改file_path
文件路径即可:
import os from pdf2docx import Converter def pdf_docx(): # 获取当前工作目录 file_path = r'C:\Users\test' # 遍历所有文件 for file in os.listdir(file_path): # 获取文件后缀 suff_name = os.path.splitext(file)[1] # 过滤非pdf格式文件 if suff_name != '.pdf': continue # 获取文件名称 file_name = os.path.splitext(file)[0] # pdf文件名称 pdf_name = file_path + '\\' + file # 要转换的docx文件名称 docx_name = file_path + '\\' + file_name + '.docx' # 加载pdf文档 cv = Converter(pdf_name) cv.convert(docx_name) cv.close() if __name__ == '__main__': pdf_docx()
7. 运行结果
控制台实现打印转换的页码进程:
实现了PDF转Word:
打开的效果:
The above is the detailed content of How to batch convert PDF files to Word documents using Python?. For more information, please follow other related articles on the PHP Chinese website!

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

WebStorm Mac version
Useful JavaScript development tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Zend Studio 13.0.1
Powerful PHP integrated development environment