search
HomeTechnology peripheralsAIStrategies and methods for clustering insurance documents using natural language processing

Translator|Li Rui

Reviewer|Sun Shujuan

Natural language processing (NLP) in the insurance industry can benefit from hybrid machine learning/symbolic approaches to improve scalability , while leveraging advanced symbolic reasoning.

Strategies and methods for clustering insurance documents using natural language processing

Insurance Documents and Policies: Complex Use Cases

It is well known that up to 87% of data science projects fail to move from proof of concept to production; natural in insurance Language processing (NLP) projects are no exception. They must overcome some of the difficulties inevitably associated with this space and its intricacies.

The main difficulties come from:

  • The complex layout of insurance-related documents.
  • Lack of large corpus with relevant annotations.

The complexity of layout is so great that the same language concept can drastically change its meaning and value depending on where it is placed in the document.

Look at a simple example: If you try to build an engine to identify whether "terrorism" coverage exists in a policy, you will have to assign a different value regardless of where it is placed:

(1) Sub-limit part of the declaration page.

(2) "Exclusion" section of the policy.

(3) Add one or more insurance endorsements.

(4) Add specific endorsements to the coverage.

The lack of high-quality, appropriately sized annotated corpora of insurance documents is directly related to the inherent difficulty of annotating such complex documents and the amount of effort required to annotate tens of thousands of policies.

And this is just the tip of the iceberg. In addition to this, the need to normalize the concept of insurance must also be considered.

Language standardization: an invisible but powerful force in insurance language

When dealing with databases, the standardization of concepts is a well-understood process. Because it is key to applying reasoning and increasing the speed of the annotation process, it is also crucial for NLP in the insurance field.

The concept of normalization means grouping elements under the same tag language, which may look very different. While there are many examples, the most important ones come from insurance policies that cover natural disasters.

In this case, different sub-limits will apply to different flood zones. Areas with the highest risk of flooding are often referred to as "high risk flood zones". This concept can be expressed as:

(1) Level 1 Flood Area

(2) Flood Risk Area (SFHA)

(3) Flood Area A

etc

In fact, any insurance coverage can have many terms that can be grouped together. Depending on the specific geographical area and its inherent risks, the most important natural disaster coverage even has two Difference between tiers or tiers (I, II and III).

Multiply this by all possible elements that can be found, and the number of variants can quickly become very large. This causes both machine learning annotators and natural language processing (NLP) engines to get bogged down when trying to retrieve, infer, or even label the correct information.

New Language Clustering: Hybrid Approaches

A better way to solve complex natural language processing (NLP) tasks is based on hybrid (machine learning/symbolic) techniques that use machine learning-based The clustering of micro-languages ​​improves the outcomes and lifecycle of insurance workflows, which are then inherited by the symbolic engine.

While traditional text clustering is used in unsupervised learning methods to infer semantic patterns and group together documents with similar topics, sentences with similar meanings, etc., hybrid methods are significantly different . Microlinguistic clusters are created at a granular level using machine learning algorithms trained on labeled data using predefined normalized values. Once a microlinguistic cluster is inferred, it can be used in further machine learning activities or in hybrid pipelines driven inference logic based on symbolic layers.

This is in line with the traditional golden rule of programming: "break the problem down." The first step in solving a complex use case (like most use cases in the insurance space) is to break it down into smaller, more palatable chunks.

What tasks can mixed language clustering accomplish, and how is its scalability?

Symbolic engines are often labeled as extremely accurate but not scalable because they do not have the flexibility of machine learning when dealing with situations not seen during training.

However, this type of language clustering solves this problem by leveraging machine learning to identify concepts that are then passed to the complex and precise logic of the symbolic engine next in the pipeline.

The possibilities are endless: for example, the symbolic step can change the intrinsic value of machine learning recognition based on the document segment to which the concept belongs.

Here is an example of using the notation process of "segmentation" (splitting text into relevant regions) to see how to use the labels passed by the machine learning module.

Imagine that the model needs to understand whether certain coverages are excluded from a 100-page policy.

The machine learning engine will first cluster together all possible variations of the "Arts" coverage:

  • "Fine Arts"
  • " "Work of Arts"
  • "Artistic Items"
  • "Jewelry"
  • and so on.

Following this, the symbols portion of the pipeline will check to see if the "Exclusions" section mentions the "Arts" tag to understand if the coverage is excluded from the policy, or if it is covered ( as part of the sub-limit list).

Thanks to this, machine learning annotators don’t have to worry about assigning different labels to all Arts variants based on their position in the policy: they just need to annotate their variants Normalized value for "Arts", which will act as a micro-language cluster.

Another useful example of complex tasks is data aggregation. If the hybrid engine is designed to extract sub-restrictions of a specific coverage, as well as coverage normalization issues, there is an additional layer of complexity to deal with: the ordering of language items used for aggregation.

Consider that the task at hand is to extract not only the sub-limits of a specific coverage, but also its qualifiers (per event, aggregation, etc.). The three items can be arranged in several different orders:

  • Fine Arts $100,000 Per Item
  • Fine Arts Per Item $100,000
  • Per Item $100,000 Fine Arts
  • $100,000 Fine Arts
  • Fine Arts $100,000

Exploiting all of these permutations while aggregating data can significantly increase the complexity of a machine learning model. A hybrid approach, on the other hand, would let the machine learning model identify the normalized labels and then let symbolic reasoning identify the correct order based on the input data from the machine learning part.

These are just two examples that demonstrate that an unlimited amount of complex symbolic logic and reasoning can be applied on top of scalable machine learning algorithms to identify canonical concepts.

Scalable workflows that are easier to build and maintain

In addition to scalability, symbolic reasoning brings other benefits to the overall project workflow:

  • Instead of implementing different machine learning workflows for complex tasks, different tags need to be implemented and maintained. Additionally, retraining a single machine learning model is faster and consumes less resources than retraining multiple models.
  • Since complex parts of business logic are handled symbolically, it is much easier for data annotators to add human annotations to machine learning pipelines.
  • For the same reasons mentioned above, it is also easier for testers to provide feedback directly to the machine learning standardization process. Additionally, since the machine learning part of the workflow normalizes language elements, users will have a smaller list of tags to label documents with.
  • Symbol rules do not need to be updated frequently: what is updated frequently is the machine learning part, which also benefits from user feedback.

Conclusion

  • Machine learning in complex projects in the insurance field may suffer because the inference logic is difficult to compress into simple tags; this also makes the annotator's life more difficult.
  • Text location and inferences can dramatically change the actual meaning of concepts with the same linguistic form.
  • In a pure machine learning workflow, the more complex the logic, the more training documents typically required to achieve production-level accuracy.
  • For this reason, machine learning requires thousands (or even tens of thousands) of pre-labeled documents to build effective models.
  • Complexity is reduced by taking a hybrid approach: machine learning and user annotations create language clusters/tags, and these are then used as starting points or building blocks for the symbolic engine to achieve its goals.
  • User feedback, once validated, can be used to retrain the model without changing the most granular parts (which can be handled by the symbolic part of the workflow).

Original title: Insurance Policies: Document Clustering Through Hybrid NLP, author: Stefano Reitano

The above is the detailed content of Strategies and methods for clustering insurance documents using natural language processing. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
How to Run LLM Locally Using LM Studio? - Analytics VidhyaHow to Run LLM Locally Using LM Studio? - Analytics VidhyaApr 19, 2025 am 11:38 AM

Running large language models at home with ease: LM Studio User Guide In recent years, advances in software and hardware have made it possible to run large language models (LLMs) on personal computers. LM Studio is an excellent tool to make this process easy and convenient. This article will dive into how to run LLM locally using LM Studio, covering key steps, potential challenges, and the benefits of having LLM locally. Whether you are a tech enthusiast or are curious about the latest AI technologies, this guide will provide valuable insights and practical tips. Let's get started! Overview Understand the basic requirements for running LLM locally. Set up LM Studi on your computer

Guy Peri Helps Flavor McCormick's Future Through Data TransformationGuy Peri Helps Flavor McCormick's Future Through Data TransformationApr 19, 2025 am 11:35 AM

Guy Peri is McCormick’s Chief Information and Digital Officer. Though only seven months into his role, Peri is rapidly advancing a comprehensive transformation of the company’s digital capabilities. His career-long focus on data and analytics informs

What is the Chain of Emotion in Prompt Engineering? - Analytics VidhyaWhat is the Chain of Emotion in Prompt Engineering? - Analytics VidhyaApr 19, 2025 am 11:33 AM

Introduction Artificial intelligence (AI) is evolving to understand not just words, but also emotions, responding with a human touch. This sophisticated interaction is crucial in the rapidly advancing field of AI and natural language processing. Th

12 Best AI Tools for Data Science Workflow - Analytics Vidhya12 Best AI Tools for Data Science Workflow - Analytics VidhyaApr 19, 2025 am 11:31 AM

Introduction In today's data-centric world, leveraging advanced AI technologies is crucial for businesses seeking a competitive edge and enhanced efficiency. A range of powerful tools empowers data scientists, analysts, and developers to build, depl

AV Byte: OpenAI's GPT-4o Mini and Other AI InnovationsAV Byte: OpenAI's GPT-4o Mini and Other AI InnovationsApr 19, 2025 am 11:30 AM

This week's AI landscape exploded with groundbreaking releases from industry giants like OpenAI, Mistral AI, NVIDIA, DeepSeek, and Hugging Face. These new models promise increased power, affordability, and accessibility, fueled by advancements in tr

Perplexity's Android App Is Infested With Security Flaws, Report FindsPerplexity's Android App Is Infested With Security Flaws, Report FindsApr 19, 2025 am 11:24 AM

But the company’s Android app, which offers not only search capabilities but also acts as an AI assistant, is riddled with a host of security issues that could expose its users to data theft, account takeovers and impersonation attacks from malicious

Everyone's Getting Better At Using AI: Thoughts On Vibe CodingEveryone's Getting Better At Using AI: Thoughts On Vibe CodingApr 19, 2025 am 11:17 AM

You can look at what’s happening in conferences and at trade shows. You can ask engineers what they’re doing, or consult with a CEO. Everywhere you look, things are changing at breakneck speed. Engineers, and Non-Engineers What’s the difference be

Rocket Launch Simulation and Analysis using RocketPy - Analytics VidhyaRocket Launch Simulation and Analysis using RocketPy - Analytics VidhyaApr 19, 2025 am 11:12 AM

Simulate Rocket Launches with RocketPy: A Comprehensive Guide This article guides you through simulating high-power rocket launches using RocketPy, a powerful Python library. We'll cover everything from defining rocket components to analyzing simula

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment