search
HomeJavajavaTutorialWhat are the basic knowledge and concepts of binary trees in Java?

    1. Tree structure

    1.1 Concept

    Tree is a non-linear data structure, which is composed of n (n> ;=0) finite nodes form a set with hierarchical relationships. It is called a tree because it looks like an upside-down tree, that is to say, it has the roots facing up and the leaves facing down.

    What are the basic knowledge and concepts of binary trees in Java?

    1.2 Concept (Important)

    a. The degree of a node: the number of subtrees of the node; as shown above: the degree of A is 6, J The degree of is 2

    b. The degree of the tree: In this tree, the degree of the largest node is the degree of the number; as shown in the figure above: the degree of the tree is 6

    c. The leaf node ( Terminal node): A node with degree 0 (node ​​without subtree)

    d. Parent node/parent node: As shown above: D is the parent node of H

    Child node/child Node: As shown in the picture above: H is the child node of D

    e. Root node: A node without parents; as shown in the picture above: A

    f. Node level: Starting from the root, the root is Level 1, the child node of the root is level 2, and so on;

    g. The height or depth of the tree: the maximum level of nodes in the tree; As shown above: the height of the tree is 4

    2. Binary tree (key point)

    2.1 Concept

    Each node has at most two subtrees, degree

    2.2 Basic form of binary tree

    What are the basic knowledge and concepts of binary trees in Java?

    2.3 Two special binary trees

    What are the basic knowledge and concepts of binary trees in Java?

    a. Full binary tree: non-cotyledon degree is 2

    b. Complete binary tree: a full binary tree is missing the "lower right corner"

    2.4 Properties of binary trees

    a. Full binary tree

    1. Height is K, then there are 2^k-1 nodes

    2. The level is K, then the layer has 2^(k-1) nodes

    3. Number of edges = nodes Number - 1

    4. There are n0 with degree 0, and n2 with degree 2, then n0 = n2 1

    b. Complete binary tree

    1. If there is a right child, there must be a left child

    2. There can only be one node with degree 1

    2.5 Storage of binary trees

    The storage structure of binary trees is divided into For: sequential storage and linked list-like storage.

    Sequential storage: only complete binary trees can be stored

    Chained storage: ordinary binary trees

    This time we show chained storage

    The chained storage of binary trees is Referenced by nodes one by one, common representation methods include binary and trifurcated representations,

    What are the basic knowledge and concepts of binary trees in Java?

    Take this picture as an example, the details are as follows:

    // 孩子表示法
    private static class TreeNode{
        char val;
        TreeNode left;
        TreeNode right;
     
        public TreeNode(char val) {
            this.val = val;
        }
    }

    Initialization:

        public static TreeNode build(){
            TreeNode nodeA=new TreeNode('A');
            TreeNode nodeB=new TreeNode('B');
            TreeNode nodeC=new TreeNode('C');
            TreeNode nodeD=new TreeNode('D');
            TreeNode nodeE=new TreeNode('E');
            TreeNode nodeF=new TreeNode('F');
            TreeNode nodeG=new TreeNode('G');
            TreeNode nodeH=new TreeNode('H');
            nodeA.left=nodeB;
            nodeA.right=nodeC;
            nodeB.left=nodeD;
            nodeB.right=nodeE;
            nodeE.right=nodeH;
            nodeC.left=nodeF;
            nodeC.right=nodeG;
            return nodeA;
        }

    2.6 Basic operations of binary trees

    2.6.1 Binary tree traversal (recursive)

    1. NLR: Preorder Traversal (also known as Preorder Traversal) Order traversal)—— Visit the root node---> the left subtree of the root---> the right subtree of the root.

        //先序遍历 : 根左右
        public static void preOrder(TreeNode root){
            if(root==null){
                return;
            }
            System.out.print(root.val+" ");
            preOrder(root.left);
            preOrder(root.right);
        }

    2. LNR: Inorder Traversal (Inorder Traversal)—— The left subtree of the root ---> The root node ---> The right subtree of the root.

        //中序遍历
        public static void inOrder(TreeNode root){
            if(root==null){
                return;
            }
            preOrder(root.left);
            System.out.print(root.val+" ");
            preOrder(root.right);
        }

    3. LRN: Postorder Traversal - left subtree of the root ---> right subtree of the root ---> root node.

        //后序遍历
        public static void postOrder(TreeNode root){
            if(root==null){
                return;
            }
            preOrder(root.left);
            preOrder(root.right);
            System.out.print(root.val+" ");
        }

    2.6.2 Binary tree traversal (iteration)

    1. Preorder traversal

        //方法2(迭代)
        //先序遍历 (迭代)
        public static void preOrderNonRecursion(TreeNode root){
            if(root==null){
                return ;
            }
            Deque<TreeNode> stack=new LinkedList<>();
            stack.push(root);
            while (!stack.isEmpty()){
                TreeNode cur=stack.pop();
                System.out.print(cur.val+" ");
                if(cur.right!=null){
                    stack.push(cur.right);
                }
                if(cur.left!=null){
                    stack.push(cur.left);
                }
            }
        }

    2. Inorder traversal

        //方法2(迭代)
        //中序遍历 (迭代)
        public static void inorderTraversalNonRecursion(TreeNode root) {
            if(root==null){
                return ;
            }
     
            Deque<TreeNode> stack=new LinkedList<>();
            // 当前走到的节点
            TreeNode cur=root;
            while (!stack.isEmpty() || cur!=null){
                // 不管三七二十一,先一路向左走到根儿~
                while (cur!=null){
                    stack.push(cur);
                    cur=cur.left;
                }
                // 此时cur为空,说明走到了null,此时栈顶就存放了左树为空的节点
                cur=stack.pop();
                System.out.print(cur.val+" ");
                // 继续访问右子树
                cur=cur.right;
            }
        }

    3.Postorder traversal Traversing

        //方法2(迭代)
        //后序遍历 (迭代)
        public static void postOrderNonRecursion(TreeNode root){
            if(root==null){
                return;
            }
            Deque<TreeNode> stack=new LinkedList<>();
            TreeNode cur=root;
            TreeNode prev=null;
     
            while (!stack.isEmpty() || cur!=null){
                while (cur!=null){
                    stack.push(cur);
                    cur=cur.left;
                }
     
                cur=stack.pop();
                if(cur.right==null || prev==cur.right){
                    System.out.print(cur.val+" ");
                    prev=cur;
                    cur=null;
                }else {
                    stack.push(cur);
                    cur=cur.right;
                }
            }
        }

    2.6.3 Basic operations of binary trees

    1. Find the number of nodes (recursion & iteration)

        //方法1(递归)
        //传入一颗二叉树的根节点,就能统计出当前二叉树中一共有多少个节点,返回节点数
        //此时的访问就不再是输出节点值,而是计数器 + 1操作
        public static int getNodes(TreeNode root){
            if(root==null){
                return 0;
            }
            return 1+getNodes(root.left)+getNodes(root.right);
        }
     
        //方法2(迭代)
        //使用层序遍历来统计当前树中的节点个数
        public static int getNodesNoRecursion(TreeNode root){
            if(root==null){
                return 0;
            }
            int size=0;
            Deque<TreeNode> queue=new LinkedList<>();
            queue.offer(root);
            while (!queue.isEmpty()) {
                TreeNode cur = queue.poll();
                size++;
                if (cur.left != null) {
                    queue.offer(cur.left);
                }
                if (cur.right != null) {
                    queue.offer(cur.right);
                }
            }
            return size;
        }

    2. Find the number of leaf nodes (recursion & iteration)

        //方法1(递归)
        //传入一颗二叉树的根节点,就能统计出当前二叉树的叶子结点个数
        public static int getLeafNodes(TreeNode root){
            if(root==null){
                return 0;
            }
            if(root.left==null && root.right==null){
                return 1;
            }
            return getLeafNodes(root.left)+getLeafNodes(root.right);
        }
     
        //方法2(迭代)
        //使用层序遍历来统计叶子结点的个数
        public static int getLeafNodesNoRecursion(TreeNode root){
            if(root==null){
                return 0;
            }
            int size=0;
            Deque<TreeNode> queue=new LinkedList<>();
            queue.offer(root);
            while (!queue.isEmpty()){
                TreeNode cur=queue.poll();
                if(cur.left==null && cur.right==null){
                    size++;
                }
                if(cur.left!=null){
                    queue.offer(cur.left);
                }
                if(cur.right!=null){
                    queue.offer(cur.right);
                }
            }
            return size;
        }

    3. Find the number of nodes in the kth layer

        //求出以root为根节点的二叉树第k层的节点个数
        public static int getKLevelNodes(TreeNode root,int k){
            if(root==null || k<=0){
                return 0;
            }
            if(k==1){
                return 1;
            }
            return getKLevelNodes(root.left,k-1)+getKLevelNodes(root.right,k-1);
        }

    4. Find the height of the tree

        //传入一个以root为根节点的二叉树,就能求出该树的高度
        public static int height(TreeNode root){
            if(root==null){
                return 0;
            }
            return 1+ Math.max(height(root.left),height(root.right));
        }

    5. Determine whether there is a value in the binary tree number. The node of value

        //判断当前以root为根节点的二叉树中是否包含指定元素val,
        //若存在返回true,不存在返回false
        public static boolean contains(TreeNode root,char value){
            if(root==null){
                return false;
            }
            if(root.val==value){
                return true;
            }
            return contains(root.left,value) || contains(root.right,value);
        }

    2.7 Level-order traversal of binary tree

        //层序遍历
        public static void levelOrder(TreeNode root) {
            if(root==null){
                return ;
            }
     
            // 借助队列来实现遍历过程
            Deque<TreeNode> queue =new LinkedList<>();
            queue.offer(root);
            while (!queue.isEmpty()){
                int size=queue.size();
                for (int i = 0; i < size; i++) {
                    TreeNode cur=queue.poll();
                    System.out.print(cur.val+" ");
                    if(cur.left!=null){
                        queue.offer(cur.left);
                    }
                    if(cur.right!=null){
                        queue.offer(cur.right);
                    }
                }
            }
        }

    The above is the detailed content of What are the basic knowledge and concepts of binary trees in Java?. For more information, please follow other related articles on the PHP Chinese website!

    Statement
    This article is reproduced at:亿速云. If there is any infringement, please contact admin@php.cn delete
    带你搞懂Java结构化数据处理开源库SPL带你搞懂Java结构化数据处理开源库SPLMay 24, 2022 pm 01:34 PM

    本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于结构化数据处理开源库SPL的相关问题,下面就一起来看一下java下理想的结构化数据处理类库,希望对大家有帮助。

    Java集合框架之PriorityQueue优先级队列Java集合框架之PriorityQueue优先级队列Jun 09, 2022 am 11:47 AM

    本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于PriorityQueue优先级队列的相关知识,Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,下面一起来看一下,希望对大家有帮助。

    完全掌握Java锁(图文解析)完全掌握Java锁(图文解析)Jun 14, 2022 am 11:47 AM

    本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于java锁的相关问题,包括了独占锁、悲观锁、乐观锁、共享锁等等内容,下面一起来看一下,希望对大家有帮助。

    一起聊聊Java多线程之线程安全问题一起聊聊Java多线程之线程安全问题Apr 21, 2022 pm 06:17 PM

    本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于多线程的相关问题,包括了线程安装、线程加锁与线程不安全的原因、线程安全的标准类等等内容,希望对大家有帮助。

    详细解析Java的this和super关键字详细解析Java的this和super关键字Apr 30, 2022 am 09:00 AM

    本篇文章给大家带来了关于Java的相关知识,其中主要介绍了关于关键字中this和super的相关问题,以及他们的一些区别,下面一起来看一下,希望对大家有帮助。

    Java基础归纳之枚举Java基础归纳之枚举May 26, 2022 am 11:50 AM

    本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于枚举的相关问题,包括了枚举的基本操作、集合类对枚举的支持等等内容,下面一起来看一下,希望对大家有帮助。

    java中封装是什么java中封装是什么May 16, 2019 pm 06:08 PM

    封装是一种信息隐藏技术,是指一种将抽象性函式接口的实现细节部分包装、隐藏起来的方法;封装可以被认为是一个保护屏障,防止指定类的代码和数据被外部类定义的代码随机访问。封装可以通过关键字private,protected和public实现。

    Java数据结构之AVL树详解Java数据结构之AVL树详解Jun 01, 2022 am 11:39 AM

    本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于平衡二叉树(AVL树)的相关知识,AVL树本质上是带了平衡功能的二叉查找树,下面一起来看一下,希望对大家有帮助。

    See all articles

    Hot AI Tools

    Undresser.AI Undress

    Undresser.AI Undress

    AI-powered app for creating realistic nude photos

    AI Clothes Remover

    AI Clothes Remover

    Online AI tool for removing clothes from photos.

    Undress AI Tool

    Undress AI Tool

    Undress images for free

    Clothoff.io

    Clothoff.io

    AI clothes remover

    AI Hentai Generator

    AI Hentai Generator

    Generate AI Hentai for free.

    Hot Article

    Hot Tools

    EditPlus Chinese cracked version

    EditPlus Chinese cracked version

    Small size, syntax highlighting, does not support code prompt function

    SublimeText3 Linux new version

    SublimeText3 Linux new version

    SublimeText3 Linux latest version

    ZendStudio 13.5.1 Mac

    ZendStudio 13.5.1 Mac

    Powerful PHP integrated development environment

    Notepad++7.3.1

    Notepad++7.3.1

    Easy-to-use and free code editor

    SublimeText3 English version

    SublimeText3 English version

    Recommended: Win version, supports code prompts!