search
HomeJavajavaTutorialJava simulation method to implement doubly linked list

Doubly linked list Also called a doubly linked list, it is a type of linked list. Each of its data nodes has two pointers, pointing to the direct successor and direct predecessor respectively. Therefore, starting from any node in the doubly linked list, you can easily access its predecessor node and successor node

The following figure is two-way The logical structure diagram of a linked list is different from a singly linked list in that each node in a doubly linked list contains pointer references to two nodes and a data field. These two nodes point to the previous node and the next node respectively;

This structure of a doubly linked list is improved compared to a singly linked list. By referencing the front and rear nodes, the entire linked list can be traversed forward or backward with a given value, which is greatly improved. The efficiency of traversal query solves the performance problem of singly linked list to a certain extent, but at the same time, the storage overhead of linked list also increases. The bottom layer of the familiar linkedList is implemented by this principle.

Java simulation method to implement doubly linked list

Without further ado, I believe everyone has understood it clearly through the above explanation. Let’s go directly to the code. You can understand the doubly linked list by combining the code and graph structure.

public class DoubleLinkTest<T> {

    /**
     * 内部构造节点类
     * 
     * @param <T>
     */
    private class Node<T> {
        private T data;
        private Node next; // 指向下一个节点的引用
        private Node prev; // 指向前一个节点的引用

        public Node(T data) {
            this.data = data;
        }
    }

    private Node<T> head; // 模拟头结点
    private Node<T> last; // 模拟尾部节点
    private Node<T> other; // 暂定一个临时节点,用作指针节点
    private int length;

    public void DoubleLinkTest() {
        head = new Node<T>(null);
        last = head;
        length = 0;
    }

    public void DoubleLinkTest(T data) {
        head = new Node<T>(data);
        last = head;
        length = 0;
    }

    /**
     * 链表是否为空
     * 
     * @return
     */
    public boolean isEmpty() {
        return length == 0;
    }

    /**
     * 普通添加,往链表尾部添加
     * 
     * @param data
     */
    public void add(T data) {
        if (isEmpty()) { // 链表为空,新创建一个链表
            head = new Node<T>(data);
            last = head;
            length++;
        } else {
            other = new Node<T>(data);
            other.prev = last;
            last.next = other; // 将新的节点与原来的尾部节点进行结构上的关联
            last = other; // other将成为最后一个节点
            length++;
        }
    }

    /**
     * 在指定的数据后面添加数据
     * 
     * @param data
     * @param insertData
     */
    public void addAfter(T data, T insertData) {
        other = head;
        while (other != null) { // 我们假定这个head是不为空的。
            if (other.data.equals(data)) {
                Node<T> t = new Node<T>(insertData);
                t.prev = other;
                t.next = other.next;// 对新插入的数据进行一个指向的定义
                other.next = t;

                if (t.next == null) {
                    last = t;
                }
                length++;
            }
            other = other.next;
        }
    }

    /**
     * 删除,删除指定的数据
     * 
     * @param data
     */
    public void remove(T data) {
        other = head;// 我们假定这个head是不为空的。
        while (other != null) {
            if (other.data.equals(data)) {
                other.prev.next = other.next;
                length--;
            }
            other = other.next;
        }

    }

    /**
     * 测试打印数据
     */
    public void printList() {
        other = head;
        for (int i = 0; i < length; i++) {
            System.out.println(other.data + "  ");
            other = other.next;
        }
    }

    public static void main(String[] args) {

        DoubleLinkTest<Integer> link = new DoubleLinkTest<Integer>();
        link.add(1);
        link.add(2);
        link.add(3);
        link.add(5);
        link.add(6);
        link.add(7);
        link.printList();

        System.out.println(" ============== ");

        System.out.println(" ==== 在3后面添加一个数据开始========== ");
        link.addAfter(3, 99);
        link.printList();

        System.out.println(" ==== 在3后面添加一个数据结束========== " + "\r\n");

        System.out.println(" ==== 移除一个数据开始========== ");
        link.remove(99);
        link.printList();
        System.out.println(" \r\n");

    }

}

Run the main function, You can see the console printout:

Java simulation method to implement doubly linked list

The above is the detailed content of Java simulation method to implement doubly linked list. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:亿速云. If there is any infringement, please contact admin@php.cn delete
How does IntelliJ IDEA identify the port number of a Spring Boot project without outputting a log?How does IntelliJ IDEA identify the port number of a Spring Boot project without outputting a log?Apr 19, 2025 pm 11:45 PM

Start Spring using IntelliJIDEAUltimate version...

How to elegantly obtain entity class variable names to build database query conditions?How to elegantly obtain entity class variable names to build database query conditions?Apr 19, 2025 pm 11:42 PM

When using MyBatis-Plus or other ORM frameworks for database operations, it is often necessary to construct query conditions based on the attribute name of the entity class. If you manually every time...

How to use the Redis cache solution to efficiently realize the requirements of product ranking list?How to use the Redis cache solution to efficiently realize the requirements of product ranking list?Apr 19, 2025 pm 11:36 PM

How does the Redis caching solution realize the requirements of product ranking list? During the development process, we often need to deal with the requirements of rankings, such as displaying a...

How to safely convert Java objects to arrays?How to safely convert Java objects to arrays?Apr 19, 2025 pm 11:33 PM

Conversion of Java Objects and Arrays: In-depth discussion of the risks and correct methods of cast type conversion Many Java beginners will encounter the conversion of an object into an array...

How do I convert names to numbers to implement sorting and maintain consistency in groups?How do I convert names to numbers to implement sorting and maintain consistency in groups?Apr 19, 2025 pm 11:30 PM

Solutions to convert names to numbers to implement sorting In many application scenarios, users may need to sort in groups, especially in one...

E-commerce platform SKU and SPU database design: How to take into account both user-defined attributes and attributeless products?E-commerce platform SKU and SPU database design: How to take into account both user-defined attributes and attributeless products?Apr 19, 2025 pm 11:27 PM

Detailed explanation of the design of SKU and SPU tables on e-commerce platforms This article will discuss the database design issues of SKU and SPU in e-commerce platforms, especially how to deal with user-defined sales...

How to set the default run configuration list of SpringBoot projects in Idea for team members to share?How to set the default run configuration list of SpringBoot projects in Idea for team members to share?Apr 19, 2025 pm 11:24 PM

How to set the SpringBoot project default run configuration list in Idea using IntelliJ...

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft