search
HomeBackend DevelopmentPython TutorialHow to draw interesting visualization charts with Python

SchemDraw

So in the SchemDraw module, there are six elements used to represent the main nodes of the flow chart. The ovals represent the beginning and end of the decision. , the code is as follows:

import schemdraw
from schemdraw.flow import *
with schemdraw.Drawing() as d:
 d += Start().label("Start")

output

How to draw interesting visualization charts with Python

The arrow represents the direction of decision-making and is used to connect each node. The code is as follows:

with schemdraw.Drawing() as d:
 d += Arrow(w = 5).right().label("Connector")

output

How to draw interesting visualization charts with Python

The parallelogram represents the problem you have to deal with and solve, and the rectangle represents the effort you have to make for it. The effort or process, the code is as follows:

with schemdraw.Drawing() as d:
 d += Data(w = 5).label("What's the problem")

output

How to draw interesting visualization charts with Python

with schemdraw.Drawing() as d:
 d += Process(w = 5).label("Processing")

output

How to draw interesting visualization charts with Python

The diamond represents the specific situation of decision-making. The code is as follows:

with schemdraw.Drawing() as d:
 d += Decision(w = 5).label("Decisions")

output

How to draw interesting visualization charts with Python

Let’s draw a Simple flow chart, if we are thinking about going camping on the weekend, then since we are going camping, we definitely need to check the weather to see if it is sunny (Sunny), if it is rainy (Rainy) ), don’t go. According to this logic, let’s draw a flow chart. The code is as follows:

import schemdraw
from schemdraw.flow import *
with schemdraw.Drawing() as d:
 d+= Start().label("Start")
 d+= Arrow().down(d.unit/2)
 # 具体是啥问题嘞
 d+= Data(w = 4).label("Go camping or not")
 d+= Arrow().down(d.unit/2)
 # 第一步 查看天气
 d+= Box(w = 4).label("Check weather first")
 d+= Arrow().down(d.unit/2)
 # 是否是晴天
 d+= (decision := Decision(w = 5, h= 5,
S = "True",
 E = "False").label("See if it's sunny"))
 # 如果是真的话
 d+= Arrow().length(d.unit/2)
 d+= (true := Box(w = 5).label("Sunny, go camping"))
 d+= Arrow().length(d.unit/2)
 # 结束
 d+= (end := Ellipse().label("End"))
 # 如果不是晴天的话
 d+= Arrow().right(d.unit).at(decision.E)
 # 那如果是下雨天的话,就不能去露营咯
 d+= (false := Box(w = 5).label("Rainy, stay at home"))
 # 决策的走向
 d+= Arrow().down(d.unit*2.5).at(false.S)
 # 决策的走向
 d+= Arrow().left(d.unit*2.15)
 d.save("palindrome flowchart.jpeg", dpi = 300)

output

How to draw interesting visualization charts with Python

Networkx

The Networkx module is used to create and process complex graph network structures, generate a variety of random networks and classic networks, analyze network structures and build network models. For example, it can be used in cases of drawing human connections. Go to the networkx module,

For example, for a company's organizational chart, you can also use this module to draw the company's overall structure simply and intuitively. The code is as follows:

import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
G = nx.DiGraph()
nodes = np.arange(0, 8).tolist()
G.add_nodes_from(nodes)
# 节点连接的信息,哪些节点的是相连接的
G.add_edges_from([(0,1), (0,2),
(1,3), (1, 4),
(2, 5), (2, 6), (2,7)])
# 节点的位置
pos = {0:(10, 10),
1:(7.5, 7.5), 2:(12.5, 7.5),
3:(6, 6), 4:(9, 6),
5:(11, 6), 6:(14, 6), 7:(17, 6)}
# 节点的标记
labels = {0:"CEO",
 1: "Team A Lead",
 2: "Team B Lead",
 3: "Staff A",
 4: "Staff B",
 5: "Staff C",
 6: "Staff D",
 7: "Staff E"}
nx.draw_networkx(G, pos = pos, labels = labels, arrows = True,
node_shape = "s", node_color = "white")
plt.title("Company Structure")
plt.show()

output

How to draw interesting visualization charts with Python

After seeing this, you may think that the result pointed out is a bit simple. If you want to add some color, the code is as follows:

nx.draw_networkx(G, pos = pos, labels = labels,
bbox = dict(facecolor = "skyblue",
boxstyle = "round", ec = "silver", pad = 0.3),
edge_color = "gray"
 )
plt.title("Company Structure")
plt.show()

output

How to draw interesting visualization charts with Python

The above is the detailed content of How to draw interesting visualization charts with Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:亿速云. If there is any infringement, please contact admin@php.cn delete
Merging Lists in Python: Choosing the Right MethodMerging Lists in Python: Choosing the Right MethodMay 14, 2025 am 12:11 AM

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

How to concatenate two lists in python 3?How to concatenate two lists in python 3?May 14, 2025 am 12:09 AM

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Python concatenate list stringsPython concatenate list stringsMay 14, 2025 am 12:08 AM

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

Python execution, what is that?Python execution, what is that?May 14, 2025 am 12:06 AM

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Python: what are the key featuresPython: what are the key featuresMay 14, 2025 am 12:02 AM

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python: compiler or Interpreter?Python: compiler or Interpreter?May 13, 2025 am 12:10 AM

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Python For Loop vs While Loop: When to Use Which?Python For Loop vs While Loop: When to Use Which?May 13, 2025 am 12:07 AM

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Python loops: The most common errorsPython loops: The most common errorsMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

Atom editor mac version download

Atom editor mac version download

The most popular open source editor