CyclicBarrier in Java is a synchronization tool that allows multiple threads to wait at a barrier until all threads reach the barrier before execution can continue. CyclicBarrier can be used to coordinate the execution of multiple threads so that they can execute simultaneously at a certain point.
CyclicBarrier is a synchronization tool in Java that allows multiple threads to wait at a barrier point until all threads reach that point before they can continue execution. CyclicBarrier can be used to coordinate the execution of multiple threads so that they can execute simultaneously at a certain point.
Usage
The basic usage of CyclicBarrier is as follows:
import java.util.concurrent.BrokenBarrierException; import java.util.concurrent.CyclicBarrier; public class CyclicBarrierExample { public static void main(String[] args) { int n = 3; CyclicBarrier barrier = new CyclicBarrier(n, new Runnable() { public void run() { System.out.println("All threads have reached the barrier"); } }); Thread t1 = new Thread(new MyRunnable(barrier), "Thread 1"); Thread t2 = new Thread(new MyRunnable(barrier), "Thread 2"); Thread t3 = new Thread(new MyRunnable(barrier), "Thread 3"); t1.start(); t2.start(); t3.start(); } static class MyRunnable implements Runnable { private final CyclicBarrier barrier; public MyRunnable(CyclicBarrier barrier) { this.barrier = barrier; } public void run() { try { System.out.println(Thread.currentThread().getName() + " is waiting at the barrier..."); barrier.await(); System.out.println(Thread.currentThread().getName() + " has crossed the barrier"); } catch (InterruptedException e) { e.printStackTrace(); } catch (BrokenBarrierException e) { e.printStackTrace(); } } } }
In this example, we create a CyclicBarrier object, which needs to wait for 3 threads to reach the barrier point. When all threads reach the barrier point, a callback function will be triggered and a message will be printed.
We create 3 threads and pass them to a custom Runnable object. In each thread's run method, we first print a message indicating that the thread is waiting for the barrier point. Then call the barrier.await() method to add the thread to the waiting queue. Execution will not continue until all threads reach the barrier point. At the end, we print a message indicating that the thread has crossed the barrier point.
The running results of the above code are as follows:
Thread 1 is waiting at the barrier...
Thread 3 is waiting at the barrier...
Thread 2 is waiting at the barrier...
All threads have reached the barrier
Thread 2 has crossed the barrier
Thread 1 has crossed the barrier
Thread 3 has crossed the barrier
It can also be seen from the above code that CyclicBarrier also supports an optional callback function. After all threads reach the barrier point, the specified callback function will be called. In the above example, when all threads reach the barrier point When the time comes, the callback function will be executed to indicate that the barrier point has been reached.
CyclicBarrier also supports a more advanced usage, which is to perform some additional operations while waiting for the thread to reach the barrier point. This can be achieved through the return value of the await method, as shown below:
int index = barrier.await(); if (index == 0) { // 执行额外的操作 }
In this example, the return value of the await method indicates the position of the thread in the waiting queue. If the return value is 0, it means The current thread is the last thread to reach the barrier point and can perform some additional operations, such as doing some finishing work such as data cleaning.
Notes
When using CyclicBarrier in Java, you need to pay attention to the following points:
1. The counter of CyclicBarrier is reusable, that is, when all After all threads reach the barrier point, the counter will be reset to its initial value and can be used again. If an exception occurs during waiting, the counter will be reset and all waiting threads will throw BrokenBarrierException.
2. If the number of waiting threads exceeds the initial value of the counter when using CyclicBarrier, all threads will wait forever. Therefore, when using CyclicBarrier, you need to ensure that the number of waiting threads does not exceed the initial value of the counter.
3. The callback function of CyclicBarrier is executed when the last thread reaches the barrier point. Therefore, The operations performed in the callback function should be thread-safe, otherwise it may Can lead to unpredictable results.
4.CyclicBarrier can be used to coordinate the execution of multiple threads so that they can execute simultaneously at a certain point. **However, if the order of execution between threads is important to the correctness of the program, then CyclicBarrier may not be the best choice. **In this case, it may be necessary to use other synchronization tools such as CountDownLatch or Semaphore.
5. The performance of CyclicBarrier may be affected by the number of waiting threads and the initial value of the counter. **If the number of waiting threads is large, or the initial value of the counter is large, performance degradation may occur. **Therefore, when using CyclicBarrier, it needs to be adjusted according to the actual situation.
In short, when using CyclicBarrier in Java, various situations need to be carefully considered to ensure the correctness and performance of the program.
The above is the detailed content of How to use CyclicBarrier for high concurrency in Java. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于结构化数据处理开源库SPL的相关问题,下面就一起来看一下java下理想的结构化数据处理类库,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于PriorityQueue优先级队列的相关知识,Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于java锁的相关问题,包括了独占锁、悲观锁、乐观锁、共享锁等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于多线程的相关问题,包括了线程安装、线程加锁与线程不安全的原因、线程安全的标准类等等内容,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于枚举的相关问题,包括了枚举的基本操作、集合类对枚举的支持等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Java的相关知识,其中主要介绍了关于关键字中this和super的相关问题,以及他们的一些区别,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于平衡二叉树(AVL树)的相关知识,AVL树本质上是带了平衡功能的二叉查找树,下面一起来看一下,希望对大家有帮助。

封装是一种信息隐藏技术,是指一种将抽象性函式接口的实现细节部分包装、隐藏起来的方法;封装可以被认为是一个保护屏障,防止指定类的代码和数据被外部类定义的代码随机访问。封装可以通过关键字private,protected和public实现。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Mac version
God-level code editing software (SublimeText3)

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
