search
HomeTechnology peripheralsAIStep-by-step visualization of the decision-making process of the gradient boosting algorithm

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

Apr 13, 2023 pm 05:52 PM
machine learninggradient boosting algorithm

The gradient boosting algorithm is one of the most commonly used ensemble machine learning techniques. This model uses a sequence of weak decision trees to build a strong learner. This is also the theoretical basis of the XGBoost and LightGBM models, so in this article, we will build a gradient boosting model from scratch and visualize it.

Introduction to Gradient Boosting Algorithm

Gradient Boosting algorithm (Gradient Boosting) is an ensemble learning algorithm that improves performance by building multiple weak classifiers and then combining them into a strong classifier. The prediction accuracy of the model.

The principle of gradient boosting algorithm can be divided into the following steps:

  1. Initialize the model: Generally speaking, we can use a simple model (such as a decision tree) as the initial classifier.
  2. Calculate the negative gradient of the loss function: Calculate the negative gradient of the loss function for each sample point under the current model. This is equivalent to asking the new classifier to fit the error under the current model.
  3. Train a new classifier: Use these negative gradients as target variables to train a new weak classifier. This weak classifier can be any classifier, such as decision tree, linear model, etc.
  4. Update model: Add new classifiers to the original model, and combine them using weighted average or other methods.
  5. Repeat iteration: Repeat the above steps until the preset number of iterations is reached or the preset accuracy is reached.

Since the gradient boosting algorithm is a serial algorithm, its training speed may be slower. Let’s introduce it with a practical example:

Assume we have a feature Set Xi and value Yi, to calculate the best estimate of y

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

We start with the mean of y

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

##Every step we want to make F_m(x) closer to y|x.

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

At each step, we want F_m(x) to be a better approximation of y given x.

First, we define a loss function

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

Then, we move in the direction where the loss function decreases fastest relative to the learner Fm Forward:

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

We don’t know the exact value of this gradient since we can’t compute y for every x, but for every x_i, the gradient is exactly equal to the residual of step m: r_i!

So we can use the weak regression tree h_m to approximate the gradient function g_m and train the residual:

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

Then, we update the learner

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

#This is gradient boosting, we are not using the loss function relative to the current The true gradient g_m of the learner is used to update the current learner F_{m}, but a weak regression tree h_m is used to update it.

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

That is, repeat the following steps

1. Calculate the residual:

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

2. Fit the regression tree h_m to the training sample and its residuals (x_i, r_i)

3. Update the model with step alpha

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

Watch It’s complicated, right? Let’s visualize this process and it will become very clear.

Visualization of decision-making process

Here we use sklearn’s moons data set, because this is a classic nonlinear Categorical Data

import numpy as np
 import sklearn.datasets as ds
 import pandas as pd
 import matplotlib.pyplot as plt
 import matplotlib as mpl
 
 from sklearn import tree
 from itertools import product,islice
 import seaborn as snsmoonDS = ds.make_moons(200, noise = 0.15, random_state=16)
 moon = moonDS[0]
 color = -1*(moonDS[1]*2-1)
 
 df =pd.DataFrame(moon, columns = ['x','y'])
 df['z'] = color
 df['f0'] =df.y.mean()
 df['r0'] = df['z'] - df['f0']
 df.head(10)

Let’s visualize the data:

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

下图可以看到,该数据集是可以明显的区分出分类的边界的,但是因为他是非线性的,所以使用线性算法进行分类时会遇到很大的困难。

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

那么我们先编写一个简单的梯度增强模型:

def makeiteration(i:int):
"""Takes the dataframe ith f_i and r_i and approximated r_i from the features, then computes f_i+1 and r_i+1"""
clf = tree.DecisionTreeRegressor(max_depth=1)
clf.fit(X=df[['x','y']].values, y = df[f'r{i-1}'])
df[f'r{i-1}hat'] = clf.predict(df[['x','y']].values)
 
eta = 0.9
df[f'f{i}'] = df[f'f{i-1}'] + eta*df[f'r{i-1}hat']
df[f'r{i}'] = df['z'] - df[f'f{i}']
rmse = (df[f'r{i}']**2).sum()
clfs.append(clf)
rmses.append(rmse)

上面代码执行3个简单步骤:

将决策树与残差进行拟合:

clf.fit(X=df[['x','y']].values, y = df[f'r{i-1}'])
 df[f'r{i-1}hat'] = clf.predict(df[['x','y']].values)

然后,我们将这个近似的梯度与之前的学习器相加:

df[f'f{i}'] = df[f'f{i-1}'] + eta*df[f'r{i-1}hat']

最后重新计算残差:

df[f'r{i}'] = df['z'] - df[f'f{i}']

步骤就是这样简单,下面我们来一步一步执行这个过程。

第1次决策

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

Tree Split for 0 and level 1.563690960407257

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

第2次决策

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

Tree Split for 1 and level 0.5143677890300751

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

第3次决策

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

Tree Split for 0 and level -0.6523728966712952

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

第4次决策

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

Tree Split for 0 and level 0.3370491564273834

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

第5次决策

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

Tree Split for 0 and level 0.3370491564273834

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

第6次决策

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

Tree Split for 1 and level 0.022058885544538498

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

第7次决策

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

Tree Split for 0 and level -0.3030575215816498

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

第8次决策

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

Tree Split for 0 and level 0.6119407713413239

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

第9次决策

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

可以看到通过9次的计算,基本上已经把上面的分类进行了区分

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

我们这里的学习器都是非常简单的决策树,只沿着一个特征分裂!但整体模型在每次决策后边的越来越复杂,并且整体误差逐渐减小。

plt.plot(rmses)

Step-by-step visualization of the decision-making process of the gradient boosting algorithm

这也就是上图中我们看到的能够正确区分出了大部分的分类

如果你感兴趣可以使用下面代码自行实验:

​https://www.php.cn/link/bfc89c3ee67d881255f8b097c4ed2d67​


The above is the detailed content of Step-by-step visualization of the decision-making process of the gradient boosting algorithm. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
How to Run LLM Locally Using LM Studio? - Analytics VidhyaHow to Run LLM Locally Using LM Studio? - Analytics VidhyaApr 19, 2025 am 11:38 AM

Running large language models at home with ease: LM Studio User Guide In recent years, advances in software and hardware have made it possible to run large language models (LLMs) on personal computers. LM Studio is an excellent tool to make this process easy and convenient. This article will dive into how to run LLM locally using LM Studio, covering key steps, potential challenges, and the benefits of having LLM locally. Whether you are a tech enthusiast or are curious about the latest AI technologies, this guide will provide valuable insights and practical tips. Let's get started! Overview Understand the basic requirements for running LLM locally. Set up LM Studi on your computer

Guy Peri Helps Flavor McCormick's Future Through Data TransformationGuy Peri Helps Flavor McCormick's Future Through Data TransformationApr 19, 2025 am 11:35 AM

Guy Peri is McCormick’s Chief Information and Digital Officer. Though only seven months into his role, Peri is rapidly advancing a comprehensive transformation of the company’s digital capabilities. His career-long focus on data and analytics informs

What is the Chain of Emotion in Prompt Engineering? - Analytics VidhyaWhat is the Chain of Emotion in Prompt Engineering? - Analytics VidhyaApr 19, 2025 am 11:33 AM

Introduction Artificial intelligence (AI) is evolving to understand not just words, but also emotions, responding with a human touch. This sophisticated interaction is crucial in the rapidly advancing field of AI and natural language processing. Th

12 Best AI Tools for Data Science Workflow - Analytics Vidhya12 Best AI Tools for Data Science Workflow - Analytics VidhyaApr 19, 2025 am 11:31 AM

Introduction In today's data-centric world, leveraging advanced AI technologies is crucial for businesses seeking a competitive edge and enhanced efficiency. A range of powerful tools empowers data scientists, analysts, and developers to build, depl

AV Byte: OpenAI's GPT-4o Mini and Other AI InnovationsAV Byte: OpenAI's GPT-4o Mini and Other AI InnovationsApr 19, 2025 am 11:30 AM

This week's AI landscape exploded with groundbreaking releases from industry giants like OpenAI, Mistral AI, NVIDIA, DeepSeek, and Hugging Face. These new models promise increased power, affordability, and accessibility, fueled by advancements in tr

Perplexity's Android App Is Infested With Security Flaws, Report FindsPerplexity's Android App Is Infested With Security Flaws, Report FindsApr 19, 2025 am 11:24 AM

But the company’s Android app, which offers not only search capabilities but also acts as an AI assistant, is riddled with a host of security issues that could expose its users to data theft, account takeovers and impersonation attacks from malicious

Everyone's Getting Better At Using AI: Thoughts On Vibe CodingEveryone's Getting Better At Using AI: Thoughts On Vibe CodingApr 19, 2025 am 11:17 AM

You can look at what’s happening in conferences and at trade shows. You can ask engineers what they’re doing, or consult with a CEO. Everywhere you look, things are changing at breakneck speed. Engineers, and Non-Engineers What’s the difference be

Rocket Launch Simulation and Analysis using RocketPy - Analytics VidhyaRocket Launch Simulation and Analysis using RocketPy - Analytics VidhyaApr 19, 2025 am 11:12 AM

Simulate Rocket Launches with RocketPy: A Comprehensive Guide This article guides you through simulating high-power rocket launches using RocketPy, a powerful Python library. We'll cover everything from defining rocket components to analyzing simula

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment