


A time series is a sequence of data points, usually consisting of consecutive measurements taken over a period of time. Time series analysis is the process of modeling and analyzing time series data using statistical techniques in order to extract meaningful information from it and make predictions.
#Time series analysis is a powerful tool that can be used to extract valuable information from data and make predictions about future events. It can be used to identify trends, seasonal patterns, and other relationships between variables. Time series analysis can also be used to predict future events such as sales, demand, or price changes.
If you are using Python to process time series data, there are many different libraries to choose from. So in this article, we will sort out the most popular libraries for working with time series in Python.
Sktime
Sktime is a Python library for processing time series data. It provides a set of tools for working with time series data, including tools for processing, visualizing, and analyzing data. Sktime is designed to be easy to use and extensible so that new time series algorithms can be easily implemented and integrated.
Sktime, as its name suggests, supports the scikit-learn API and contains all the necessary methods and tools to effectively solve problems involving time series regression, prediction, and classification. This library contains specialized machine learning algorithms and unique conversion methods for time series that are not provided in other libraries, so Sktime can be used as a very good basic library.
According to sktime’s documentation, “Our goal is to make the time series analysis ecosystem as a whole more interoperable and usable. Sktime provides a unified interface for different but related time series learning tasks. It Features specialized time series algorithms and tools for combinatorial model building, including pipeline pipelines, integration, tuning and simplification, allowing users to apply algorithms from one task to another.
sktime It also provides interfaces with related libraries, such as scikit-learn, statsmodels, tsfresh, PyOD and [fbprophet], etc."
The following is a code sample
from sktime.datasets import load_airline from sktime.forecasting.model_selection import temporal_train_test_split # from sktime.utils.plotting.forecasting import plot_ys y = load_airline() y_train, y_test = temporal_train_test_split(y) plt.title('Airline Data with Train and Test') y_train.plot(label = 'train') y_test.plot(label = 'test') plt.legend()
pmdarima
pmdarima is a Python library for statistical analysis of time series data. It is based on the ARIMA model and provides various tools for analyzing, forecasting and visualizing time series data. Pmdarima also provides various tools for working with seasonal data, including seasonality testing and seasonal decomposition tools.
One of the forecasting models often used in time series analysis is ARIMA (Autoregressive Integrated Moving Average). ARIMA is a forecasting algorithm that predicts future values based on information from past values of a time series.
pmdarima is a wrapper for the ARIMA model. It comes with an automatic hyperparameter search function that can automatically find the best hyperparameters (p, d, q) for the ARIMA model. The library includes the following main functional points:
- A set of statistical tests on stationarity and seasonality
- Time series utility, such as difference and inverse difference
- Numerous endogenous and exogenous transformers and characterizations, including Box-Cox and Fourier transforms
- Seasonal time series decomposition
- Cross-validation tools
- Built-in a rich A collection of time series datasets available for prototypes and examples
AutoTS
As the name suggests, it is a Python library for automated time series analysis. AutoTS allows us to train multiple time series models with a single line of code so that we can choose the most suitable model.
This library is part of autoML and its goal is to provide an automation library for beginners.
TSFresh
tsfresh is a Python package that can automatically extract features from time series. It is based on the fact that the information in the time series can be decomposed into a set of meaningful features. tsfresh takes care of the tedious task of manually extracting these features and provides tools for automatic feature selection and classification. It can be used with pandas DataFrames and provides a wide range of functions for processing time series data, including:
- Automatic feature extraction from time series
- Automatic feature selection
- Time series decomposition
- Dimensionality reduction
- Outlier detection
- Support multiple time series formats
- Support missing values
- Support multiple languages
Prophet
Prophet is an open source software released by Facebook’s core data science team. It is based on an additive model in which non-linear trends are fit for annual, weekly and daily seasonality, plus holiday effects. It is best suited for time series with strong seasonal effects and historical data over several seasons. Prophet is very robust to missing data and changes in trends, and generally handles outliers well.
根据官方文档,fbprophet在处理具有显著季节性影响的时间序列数据和几个季节价值的之前数据时工作得非常好。此外fbprophet能够抵抗缺失数据,并能够有效地管理异常值。
Statsforecast
Statsforecast提供了一组广泛使用的单变量时间序列预测模型,包括自动ARIMA和ETS建模并使用numba优化。它还包括大量的基准测试模型。根据官网的介绍:
- Python和R中最快最准确的AutoARIMA。
- Python和R中最快最准确的ETS。
- 兼容sklearn接口。
- ARIMA的外生变量和预测区间的包含。
- 比pmdarima快20倍,比Prophet快500倍,比NeuralProphet快100倍,比statmodels快4倍。
- 通过numba编译为高性能机器代码。
- 开箱即用的实现ADIDA, HistoricAverage, CrostonClassic, CrostonSBA, CrostonOptimized, seasonalwindowaaverage, SeasonalNaive, IMAPA Naive, RandomWalkWithDrift, windowaaverage, SeasonalExponentialSmoothing, TSB, AutoARIMA和ETS。
kats
Kats 是 Facebook 研究团队最近开发的另一个专门处理时间序列数据的库。该框架的目标是为解决时间序列问题提供一个完整的解决方案。使用此库,我们可以执行以下操作:
- 时间序列分析
- 模式检测,包括季节性、异常值、趋势变化
- 产生65个特征的特征工程模块
- 对时间序列数据建立预测模型,包括Prophet、ARIMA、Holt Winters等。
Darts
Darts 是由 Unit8.co 开发的用于预测时间序列,并且对scikit-learn 友好 的Python 包。它包含大量模型,从 ARIMA 到深度神经网络,用于处理与日期和时间相关的数据。
该库的好处在于它还支持用于处理神经网络的多维类。
它还允许用户结合来自多个模型和外部回归模型的预测,从而更容易地对模型进行回测。
Pyflux
Pyflux 是一个为 Python 构建的开源时间序列库。Pyflux选择了更多的概率方法来解决时间序列问题。这种方法对于需要更完整的不确定性的预测这样的任务特别有利。
用户可以建立一个概率模型,其中通过联合概率将数据和潜在变量视为随机变量。
PyCaret
PyCaret是一个基于Python的开源、低代码的机器学习库,它是一个端到端机器学习和模型管理工具,可以成倍地加快实验周期,让工作效率更高。
与其他开源机器学习库相比,PyCaret是一个可替代的低代码库,可以只用几行代码替换数百行代码。这使得实验的速度和效率呈指数级增长。PyCaret本质上是scikit-learn、XGBoost、LightGBM、CatBoost、spacacy、Optuna、Hyperopt、Ray等几个机器学习库和框架的Python包装。
虽然PyCaret不是一个专门的时间序列预测库,但它有一个专门用于时间序列预测的新模块。它仍然处于预发布状态,但是安装时需要使用以下代码进行安装才能使用新的模块
pip install --pre pycaret
PyCaret时间序列模块与现有的API一致,并且可以使用完整的功能,例如:统计测试、模型训练和选择(30+算法模型)、模型分析、自动超参数调优、实验日志、云部署等。所有这些都只用了几行代码就完成了。
总结
Python中有许多可用的时间序列预测库(比我们在这里介绍的更多)。每个库都有自己的优缺点,因此根据自己的需要选择合适的是很重要的。如果你有什么更好的推荐,请留言告诉我们。
The above is the detailed content of Ten Python libraries recommended for time series analysis in 2022. For more information, please follow other related articles on the PHP Chinese website!

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

译者 | 朱先忠审校 | 孙淑娟在我之前的博客中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。本文包括的内容如下:简介LazyPredict模块的安装在分类模型中实施LazyPredict

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 English version
Recommended: Win version, supports code prompts!

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)
