Previously, ImageNet became a hot topic because of the problem of label errors. You may be surprised to hear this number. There are at least 100,000 labels with problems. Studies based on incorrect labels may have to be overturned and repeated.
From this point of view, managing the quality of data sets is still very important.
Many people will use the ImageNet data set as a benchmark, but based on the ImageNet pre-trained model, the final results may vary due to data quality.
In this article, Kenichi Higuchi, an engineer from Adansons Company, re-studies the ImageNet data set in the article "Are we done with ImageNet?", and after removing the wrong label data, re-evaluates it and publishes it on torchvision model.
Remove erroneous data from ImageNet and re-evaluate the model
This paper divides labeling errors in ImageNet into three categories, as follows.
(1) Data with incorrect labeling
(2) Data corresponding to multiple labels
(3) Data that does not belong to any label
In summary, there are approximately more than 14,000 erroneous data. Considering that the number of evaluation data is 50,000, it can be seen that the proportion of erroneous data is extremely high. The figure below shows some representative error data.
Method
Without retraining the model, this study only excludes incorrectly labeled data, That is, the above-mentioned type (1) erroneous data, and excluding all erroneous data from the evaluation data, that is, (1)-(3) erroneous data, to recheck the accuracy of the model.
In order to delete error data, a metadata file describing the label error information is required. In this metadata file, if it contains errors of type (1)-(3), the information will be described in the "correction" attribute.
The study used a tool called Adansons Base, which filters data by linking datasets to metadata. 10 models were tested here as shown below.
10 image classification models used for testing
Results
The results are shown in the table below (numeric values is the accuracy in %, the number in brackets is the ranking)
The results of 10 classification models
With All Eval data is the baseline. Excluding incorrect data types (1), the accuracy increases by an average of 3.122 points. Excluding all incorrect data (1) to (3), the accuracy increases by an average of 11.743 points.
As expected, excluding erroneous data, the accuracy rate is improved across the board. There is no doubt that compared with clean data, erroneous data is prone to errors.
The accuracy ranking of the model changed when the evaluation was performed without excluding erroneous data, and when erroneous data (1)~(3) were all excluded.
In this article, there are 3,670 erroneous data (1), accounting for 7.34% of the total 50,000 pieces of data. After removal, the accuracy rate increased by about 3.22 points on average. When erroneous data is removed, the data scale changes, and a simple comparison of accuracy rates may be biased.
Conclusion
Although not specifically emphasized, it is important to use accurately labeled data when doing evaluation training.
Previous studies may have drawn incorrect conclusions when comparing accuracy between models. So the data should be evaluated first, but can this really be used to evaluate the performance of the model?
Many models using deep learning often disdain to reflect on the data, but are eager to improve accuracy and other evaluation metrics through the performance of the model, even if the evaluation data contains erroneous data. Not processed accurately.
When creating your own data sets, such as when applying AI in business, creating high-quality data sets is directly related to improving the accuracy and reliability of AI. The experimental results of this paper show that simply improving data quality can improve accuracy by about 10 percentage points, which demonstrates the importance of improving not only the model but also the data set when developing AI systems.
However, ensuring the quality of the data set is not easy. While increasing the amount of metadata is important to properly assess the quality of AI models and data, it can be cumbersome to manage, especially with unstructured data.
The above is the detailed content of ImageNet label error removed, model ranking changed significantly. For more information, please follow other related articles on the PHP Chinese website!

The term "AI-ready workforce" is frequently used, but what does it truly mean in the supply chain industry? According to Abe Eshkenazi, CEO of the Association for Supply Chain Management (ASCM), it signifies professionals capable of critic

The decentralized AI revolution is quietly gaining momentum. This Friday in Austin, Texas, the Bittensor Endgame Summit marks a pivotal moment, transitioning decentralized AI (DeAI) from theory to practical application. Unlike the glitzy commercial

Enterprise AI faces data integration challenges The application of enterprise AI faces a major challenge: building systems that can maintain accuracy and practicality by continuously learning business data. NeMo microservices solve this problem by creating what Nvidia describes as "data flywheel", allowing AI systems to remain relevant through continuous exposure to enterprise information and user interaction. This newly launched toolkit contains five key microservices: NeMo Customizer handles fine-tuning of large language models with higher training throughput. NeMo Evaluator provides simplified evaluation of AI models for custom benchmarks. NeMo Guardrails implements security controls to maintain compliance and appropriateness

AI: The Future of Art and Design Artificial intelligence (AI) is changing the field of art and design in unprecedented ways, and its impact is no longer limited to amateurs, but more profoundly affecting professionals. Artwork and design schemes generated by AI are rapidly replacing traditional material images and designers in many transactional design activities such as advertising, social media image generation and web design. However, professional artists and designers also find the practical value of AI. They use AI as an auxiliary tool to explore new aesthetic possibilities, blend different styles, and create novel visual effects. AI helps artists and designers automate repetitive tasks, propose different design elements and provide creative input. AI supports style transfer, which is to apply a style of image

Zoom, initially known for its video conferencing platform, is leading a workplace revolution with its innovative use of agentic AI. A recent conversation with Zoom's CTO, XD Huang, revealed the company's ambitious vision. Defining Agentic AI Huang d

Will AI revolutionize education? This question is prompting serious reflection among educators and stakeholders. The integration of AI into education presents both opportunities and challenges. As Matthew Lynch of The Tech Edvocate notes, universit

The development of scientific research and technology in the United States may face challenges, perhaps due to budget cuts. According to Nature, the number of American scientists applying for overseas jobs increased by 32% from January to March 2025 compared with the same period in 2024. A previous poll showed that 75% of the researchers surveyed were considering searching for jobs in Europe and Canada. Hundreds of NIH and NSF grants have been terminated in the past few months, with NIH’s new grants down by about $2.3 billion this year, a drop of nearly one-third. The leaked budget proposal shows that the Trump administration is considering sharply cutting budgets for scientific institutions, with a possible reduction of up to 50%. The turmoil in the field of basic research has also affected one of the major advantages of the United States: attracting overseas talents. 35

OpenAI unveils the powerful GPT-4.1 series: a family of three advanced language models designed for real-world applications. This significant leap forward offers faster response times, enhanced comprehension, and drastically reduced costs compared t


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 English version
Recommended: Win version, supports code prompts!
