


Let's talk about Python's implementation of data serialization operations
In daily development, serializing and deserializing data are common data operations. Python provides two modules to facilitate developers to implement data serialization operations, namely the json module and the pickle module. The main differences between these two modules are as follows:
- json is a text serialization format, while pickle is a binary serialization format;
- json is something we can read intuitively, while pickle is No;
- json is interoperable and widely used outside the Python system, while pickle is exclusive to Python;
- By default, json can only represent Python built-in types Subset cannot represent custom classes; but pickle can represent a large number of Python data types.
Json module
Json is a lightweight data exchange format. Due to its small amount of transmitted data and easy parsing of the data format With its characteristics, it is widely used in interactive operations between various systems to transfer data as a data format. It contains multiple commonly used functions, as follows:
dumps() function
dumps() function can encode Python objects into Json strings. For example:
#字典转成json字符串 加上ensure_ascii=False以后,可以识别中文, indent=4是间隔4个空格显示 import json d={'小明':{'sex':'男','addr':'上海','age':26},'小红':{ 'sex':'女','addr':'上海', 'age':24},} print(json.dumps(d,ensure_ascii=False,indent=4)) #执行结果: { "小明": { "sex": "男", "addr": "上海", "age": 26 }, "小红": { "sex": "女", "addr": "上海", "age": 24 } }
dump() function
dump() function can encode Python objects into json strings and automatically write them to files, without the need to write separate files. For example:
#字典转成json字符串,不需要写文件,自动转成的json字符串写入到‘users.json’的文件中 import json d={'小明':{'sex':'男','addr':'上海','age':26},'小红':{ 'sex':'女','addr':'上海', 'age':24},} #打开一个名字为‘users.json’的空文件 fw =open('users.json','w',encoding='utf-8') json.dump(d,fw,ensure_ascii=False,indent=4)
loads() function
loads() function can convert a json string into a Python data type. For example:
#这是users.json文件中的内容 { "小明":{ "sex":"男", "addr":"上海", "age":26 }, "小红":{ "sex":"女", "addr":"上海", "age":24 } } #!/usr/bin/python3 #把json串变成python的数据类型 import json #打开‘users.json’的json文件 f =open('users.json','r',encoding='utf-8') #读文件 res=f.read() print(json.loads(res)) #执行结果: {'小明': {'sex': '男', 'addr': '上海', 'age': 26}, '小红': {'sex': '女', 'addr': '上海', 'age': 24}}
load() function
load() has similar functions to loads(). The load() function can convert json strings into Python data types. The difference is the parameters of the former. It is a file object and there is no need to read this file separately. For example:
#把json串变成python的数据类型:字典,传一个文件对象,不需要再单独读文件 import json #打开文件 f =open('users.json','r',encoding='utf-8') print(json.load(f)) #执行结果: {'小明': {'sex': '男', 'addr': '上海', 'age': 26}, '小红': {'sex': '女', 'addr': '上海', 'age': 24}}
Pickle module
The Pickle module has similar functions to the Json module and also contains four functions, namely dump(), dumps(), loads() and load(). The main differences are as follows:
The difference between dumps and dump is that the former serializes the object, while the latter serializes the object and saves it to a file.
The difference between loads and load is that the former deserializes the serialized string, while the latter reads the serialized string from the file and deserializes it.
dumps() function
dumps() function can convert data into a string that is only recognized by python language in a special form, for example:
import pickle # dumps功能 import pickle data = ['A', 'B', 'C','D'] print(pickle.dumps(data)) b'x80x03]qx00(Xx01x00x00x00Aqx01Xx01x00x00x00Bqx02Xx01x00x00x00Cqx03Xx01x00x00x00Dqx04e.'
dump() function
The dump() function can convert data into a string recognized only by the Python language in a special form and write it to a file. For example:
# dump功能 with open('test.txt', 'wb') as f: pickle.dump(data, f) print('写入成功') 写入成功
loads() function
loads() function can convert pickle data into python data structure. For example:
# loads功能 msg = pickle.loads(datastr) print(msg) ['A', 'B', 'C', 'D']
load() function
load() function can read data from a data file and convert it into a python data structure. For example:
# load功能 with open('test.txt', 'rb') as f: data = pickle.load(f) print(data) ['A', 'B', 'C', 'D']
Summary
This section introduces you to the common operations of the json&pickle module in Python, which provides support for serializing and deserializing data.
The above is the detailed content of Let's talk about Python's implementation of data serialization operations. For more information, please follow other related articles on the PHP Chinese website!

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

SublimeText3 English version
Recommended: Win version, supports code prompts!

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.