search
HomeTechnology peripheralsAIMachine learning accelerates advanced manufacturing technologies

Machine learning accelerates advanced manufacturing technologies

Apr 12, 2023 am 08:22 AM
AImachine learningfinance

​Although life today is filled with astonishing technological advances, the use of metals that underpin these developments has not changed significantly in thousands of years. That's everything from the metal rods, tubes and cubes that give cars and trucks their shape, strength and fuel economy, to the wires that carry electricity to everything from power plants to undersea cables.

Machine learning accelerates advanced manufacturing technologies

But things are changing rapidly: the materials manufacturing industry is using new innovative technologies, processes and methods to improve existing products and create new ones. The United States' Pacific Northwest National Laboratory (PNNL) is a leader in this field, known as advanced manufacturing. Founded in 1965, PNNL leverages its unique strengths in chemistry, earth sciences, biology and data science to advance scientific knowledge to address sustainable energy and national security challenges.

Scientists working in PNNL’s Artificial Intelligence Reasoning in Science project have pioneered ways to design and train computer software using machine learning, a branch of artificial intelligence, to guide the development of new manufacturing processes.

These software programs are trained to recognize patterns in manufacturing data and use this pattern recognition ability to recommend or predict settings in the manufacturing process that will produce materials with improved properties than using traditional methods The materials produced are lighter, stronger or more conductive.

Keerti Kappagantula, a materials scientist at PNNL, said: "The components we create using advanced manufacturing processes are very attractive to industrial companies, and they want to see these technologies launched as soon as possible."

A challenge However, industry partners are reluctant to invest in new technologies until the underlying physics and other complexities of advanced manufacturing technologies have been fully fleshed out and proven.

To bridge the gap, Kappagantula worked with PNNL data scientists Henry Kvinge and Tegan Emerson to develop machine learning tools that predict how various settings in the manufacturing process affect material properties. These tools also display forecasts visually, providing immediate clarity and understanding to industry partners and others.

By using these machine learning tools, the team believes the time from lab to factory can be reduced to months instead of years. Guided by the tool's predictions, materials scientists can determine future material properties by conducting only a few experiments, rather than dozens. For example, what settings would cause aluminum pipes to perform as expected.

Our goal is to use machine learning as a tool to help guide people who are running advanced manufacturing processes to try different settings — different process parameters — on their equipment to find One that allows them to achieve what they actually want to achieve."

solve the right problem

In traditional manufacturing, computer models are built on a very good understanding of the physics of the manufacturing process , showing how different settings affect the material's properties. Kappagantula said that in advanced manufacturing, the physics is poorly understood. Without this professional understanding, production is delayed.

New Advanced Manufacturing Artificial Intelligence Tools project aims to identify how machine learning can be used to extract patterns between process parameters and resulting material properties, which provides insights into the underlying physics of advanced manufacturing technologies and could accelerate their deployment.

"The approach we take, the unifying theme, starts with understanding how materials scientists apply their expertise and what mental models do they have? And then using that as a framework to build models," Kvinge said.

In this project a machine learning model is required to predict the performance of a material given specific parameters. In consultations with materials scientists, he quickly learned that what they really wanted was to be able to specify a property and have a model suggest all the process parameters that could be used to achieve that property.

An Explainable Solution

What Kappagantula and her colleagues needed was a machine learning framework that could provide results that would help her team make decisions about what experiments to try next. In the absence of such guidance, the process of adjusting parameters to develop materials with desired properties is fraught with risk of failure.

In this project, Kvinge and his colleagues first developed a machine learning model called "differential attribute classification", which uses the pattern matching capabilities of machine learning to distinguish two sets of process parameters to Determine which group is more likely to produce a material with the desired properties.

The model allows materials scientists to lock in optimal parameters before starting experiments, which can be expensive and require extensive preparation.

Kappagantula said that before conducting experiments on machine learning model recommendations, she needed to trust the model’s recommendations. "I'd like to be able to see how it performs analysis."

This concept is called interpretability in the field of machine learning, and it means different things to experts in different fields. Kvinge noted that for a data scientist, the explanation of how a machine learning model arrived at its predictions may be completely different from the explanation that makes sense to a materials scientist.

When Kvinge, Emerson and their colleagues tackled this problem, they tried to understand it from the perspective of a materials scientist.

"It turns out they know this very well from pictures of the microstructure of these materials," Kvinge said. "If you ask them what went wrong, why the experiment didn't go well, or why it went well, they They'll look at the pictures and point out problems to you, saying these particles are too big, or too small, or something like that." To make the results of their machine learning model interpretable, Kvinge , Emerson and colleagues used microstructural images and related data from previous experiments to train a model that generates microstructural images that would result from a manufacturing process tuned by a given set of parameters.

The team is currently validating the model and working to make it part of a software framework that materials scientists can use to determine which experiments to conduct while developing advanced manufacturing technologies that promise to transform materials production and performance.

Kappagantula said of advanced manufacturing: “It’s not just improving energy efficiency, it’s opening up new materials with never-before-seen properties and performance.”​

The above is the detailed content of Machine learning accelerates advanced manufacturing technologies. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
AI Therapists Are Here: 14 Groundbreaking Mental Health Tools You Need To KnowAI Therapists Are Here: 14 Groundbreaking Mental Health Tools You Need To KnowApr 30, 2025 am 11:17 AM

While it can’t provide the human connection and intuition of a trained therapist, research has shown that many people are comfortable sharing their worries and concerns with relatively faceless and anonymous AI bots. Whether this is always a good i

Calling AI To The Grocery AisleCalling AI To The Grocery AisleApr 30, 2025 am 11:16 AM

Artificial intelligence (AI), a technology decades in the making, is revolutionizing the food retail industry. From large-scale efficiency gains and cost reductions to streamlined processes across various business functions, AI's impact is undeniabl

Getting Pep Talks From Generative AI To Lift Your SpiritGetting Pep Talks From Generative AI To Lift Your SpiritApr 30, 2025 am 11:15 AM

Let’s talk about it. This analysis of an innovative AI breakthrough is part of my ongoing Forbes column coverage on the latest in AI including identifying and explaining various impactful AI complexities (see the link here). In addition, for my comp

Why AI-Powered Hyper-Personalization Is A Must For All BusinessesWhy AI-Powered Hyper-Personalization Is A Must For All BusinessesApr 30, 2025 am 11:14 AM

Maintaining a professional image requires occasional wardrobe updates. While online shopping is convenient, it lacks the certainty of in-person try-ons. My solution? AI-powered personalization. I envision an AI assistant curating clothing selecti

Forget Duolingo: Google Translate's New AI Feature Teaches LanguagesForget Duolingo: Google Translate's New AI Feature Teaches LanguagesApr 30, 2025 am 11:13 AM

Google Translate adds language learning function According to Android Authority, app expert AssembleDebug has found that the latest version of the Google Translate app contains a new "practice" mode of testing code designed to help users improve their language skills through personalized activities. This feature is currently invisible to users, but AssembleDebug is able to partially activate it and view some of its new user interface elements. When activated, the feature adds a new Graduation Cap icon at the bottom of the screen marked with a "Beta" badge indicating that the "Practice" feature will be released initially in experimental form. The related pop-up prompt shows "Practice the activities tailored for you!", which means Google will generate customized

They're Making TCP/IP For AI, And It's Called NANDAThey're Making TCP/IP For AI, And It's Called NANDAApr 30, 2025 am 11:12 AM

MIT researchers are developing NANDA, a groundbreaking web protocol designed for AI agents. Short for Networked Agents and Decentralized AI, NANDA builds upon Anthropic's Model Context Protocol (MCP) by adding internet capabilities, enabling AI agen

The Prompt: Deepfake Detection Is A Booming BusinessThe Prompt: Deepfake Detection Is A Booming BusinessApr 30, 2025 am 11:11 AM

Meta's Latest Venture: An AI App to Rival ChatGPT Meta, the parent company of Facebook, Instagram, WhatsApp, and Threads, is launching a new AI-powered application. This standalone app, Meta AI, aims to compete directly with OpenAI's ChatGPT. Lever

The Next Two Years In AI Cybersecurity For Business LeadersThe Next Two Years In AI Cybersecurity For Business LeadersApr 30, 2025 am 11:10 AM

Navigating the Rising Tide of AI Cyber Attacks Recently, Jason Clinton, CISO for Anthropic, underscored the emerging risks tied to non-human identities—as machine-to-machine communication proliferates, safeguarding these "identities" become

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor