


Control is the strategy that drives the vehicle forward. The goal of control is to use feasible control quantities to minimize the deviation from the target trajectory, maximize passenger comfort, etc.
As shown in the figure above, the modules associated with the input of the control module include planning module, positioning module and vehicle information, etc. The positioning module provides vehicle location information, the planning module provides target trajectory information, and vehicle information includes gear, speed, acceleration, etc. The control outputs are steering, acceleration and braking quantities.
The control module is mainly divided into horizontal control and vertical control. According to the different coupling forms, it can be divided into two methods: independent and integrated.
1 Control method
1.1 Decoupling control
So-called Decoupled control means to control horizontal and vertical control methods independently.
1.2 Coupling control
Coupling control takes into account the coupling problems that exist in horizontal and vertical control. A typical example is that a car cannot corner at high speed because when the longitudinal speed is too high, the lateral angular speed needs to be limited, otherwise the centripetal force cannot satisfy the centripetal acceleration.
The typical representative method of horizontal and vertical integration is linear time-varying model predictive control. This method adds horizontal and vertical integration on the basis of model predictive control. constraint. Such as maximum centripetal acceleration constraints, etc.
1.3 Lateral control
##As shown above, lateral control can be divided into geometric methods and kinematic model-based methods. methods and dynamic model-based methods.
1.3.1 Feedforward control
The so-called feedforward control is based on tracking point information. Control the amount to make appropriate compensation in advance. A typical example is to use the curvature information in the tracking sequence points to compensate for the rotation angle.
1.3.2 Chained Form
The chained system linearizes the nonlinear system into multiple layers, and decomposes the system layer by layer. In turn, the system can be slowed down, similar to the filtering system [3].
System model in frenet coordinates:
##1.3.3 Lyapunov
Based on Lyapunov The design of Nove stability method can be applied to kinematic and dynamic models. The basic idea is to first establish a kinematic or dynamic model, propose a tracking method based on the model, and then establish a Lyapunov function to prove the asymptotic stability of the closed-loop system through Lyapunov stability [4].
- Kinematic model
As shown in the figure above, the current point of the car is P, tracking the target point For Pr. is the pose difference between the current position and the target point, and are the reference velocity and angular velocity respectively. Design Lyapunov function:
Tracking rate design:
Finally, by limiting the constraint design parameters, the asymptotic stability of the tracking rate is proved, that is, when → ∞, → 0.
- Kinematic model
First establish the kinetic model:
Among them:
order
The error is:
Design cost function:
Design control rate:
Finally proves asymptotic stability.
1.3.4 Pure Pursuit
Pure tracking is a geometric path tracking controller. This controller uses the geometric relationship between the vehicle motion and the reference path to track the controller of the reference path. This control method uses the center of the vehicle's rear axle as a reference point.
According to the above picture, you can push out the front wheel turning command:
where R is the turning radius, L is the vehicle wheelbase, e is the lateral error between the vehicle's current attitude and the target waypoint, is the forward-looking distance and .
According to the experimental data in the figure above, as the forward-looking distance increases, the tracking jitter becomes smaller and smaller. Shorter front-sight distance provides more accurate tracking, while longer front-sight distance provides smoother tracking. Another characteristic of the PurePursuit is that excessive front sight distance can cause "cutting corners" when tracking turns. The Pure Pursuit is a hard trade-off between stability and tracking performance.
1.3.5 Stanley
Different from the pure chasing pure tracking method where the rear axis is the reference point, the Stanley controller uses the front axis as the reference point. It takes into account both heading and lateral errors. The Stanley controller not only considers heading errors but also lateral errors.
According to the above picture, you can push out the front wheel turning command:
According to the experimental data in the above figure, as k increases, the tracking performance will also improve. Stanley does not have enough stability like Pure Pursuit when the vehicle speed increases.
1.3.6 LQR
The method based on the vehicle kinematic model ignores the dynamic characteristics of the vehicle, so when the vehicle speed is too fast or the curvature When the change rate is too large, the algorithm cannot meet the vehicle's stability control requirements. For control methods based on vehicle dynamics models, the primary task is to model vehicle dynamics. Since the accurate two-degree-of-freedom dynamic model is nonlinear, in order to facilitate real-time tracking control calculations, it is usually necessary to make some simplified approximations based on the accurate two-degree-of-freedom dynamic model to obtain a linear two-degree-of-freedom dynamic model.
- Vehicle two-degree-of-freedom dynamic model:
- LQR:
The Linear Quadratic Regulator (LQR) is a model-based controller that uses the state of the vehicle to minimize the error. LQR theory is the earliest and most mature state space design method in modern control theory. LQR can obtain the optimal control law of state linear feedback and is easy to form closed-loop optimal control.
LQR optimal design means that the designed state feedback controller K should minimize the quadratic objective function J, and K is uniquely determined by the weight matrices Q and R, so The choice of Q and R is particularly important. The following formula is the LQR cost function:
According to the vehicle dynamics model and the LQR cost function, the algebraic Licati equation can be derived:
Finally, the feedback matrix is calculated by iterating the Ricati equation, and then the optimal control amount is obtained based on the feedback matrix.
1.3.7 MPC
MPC (Model Prediction Control) is a method dedicated to extending the span of time, even to infinite time. The optimal control problem is decomposed into several optimization control problems with shorter time spans or limited time spans, and the optimal solution is still pursued to a certain extent.
MPC consists of the following three elements:
- Prediction model: The prediction model can predict changes in system status very well in a short period of time;
- Online rolling optimization: The results obtained by the prediction model There is still a deviation from the actual situation, so rolling optimization is used to find the local optimal solution at each moment. Usually, an objective (loss) function is designed and converted into a quadratic programming problem to find the optimal solution;
- Feedback Correction: Re-predict and optimize based on the new state at the next point in time.
- Prediction model:
The prediction model can be derived based on the vehicle dynamics model in LQR.
- Scroll optimization:
MPC cost function:
The corresponding control instructions can be obtained by optimizing the solution based on the prediction model, vehicle lateral constraints, and cost function.
1.3.8 Comparison of horizontal control algorithms
1.4 Vertical direction
As shown in the figure above, vertical control generally adopts the cascade pid control method.
2 Detailed design
##The design of the controller is as shown in the figure above, where Controller As the base class, LonController, LonController and MPCController inherit this base class. LonController has derived subclasses such as LQRController, LyapunovController and StanleyController.
The above is the detailed content of Detailed explanation of commonly used control methods for smart car planning and control. For more information, please follow other related articles on the PHP Chinese website!

智能应用控制是Windows11中非常有用的工具,可帮助保护你的电脑免受可能损害数据的未经授权的应用(如勒索软件或间谍软件)的侵害。本文将解释什么是智能应用控制、它是如何工作的,以及如何在Windows11中打开或关闭它。什么是Windows11中的智能应用控制?智能应用控制(SAC)是Windows1122H2更新中引入的一项新安全功能。它与MicrosoftDefender或第三方防病毒软件一起运行,以阻止可能不必要的应用,这些应用可能会减慢设备速度、显示意外广告或执行其他意外操作。智能应用

定位在自动驾驶中占据着不可替代的地位,而且未来有着可期的发展。目前自动驾驶中的定位都是依赖RTK配合高精地图,这给自动驾驶的落地增加了不少成本与难度。试想一下人类开车,并非需要知道自己的全局高精定位及周围的详细环境,有一条全局导航路径并配合车辆在该路径上的位置,也就足够了,而这里牵涉到的,便是SLAM领域的关键技术。什么是SLAMSLAM (Simultaneous Localization and Mapping),也称为CML (Concurrent Mapping and Localiza

01什么是滑板底盘所谓滑板式底盘,即将电池、电动传动系统、悬架、刹车等部件提前整合在底盘上,实现车身和底盘的分离,设计解耦。基于这类平台,车企可以大幅降低前期研发和测试成本,同时快速响应市场需求打造不同的车型。尤其是无人驾驶时代,车内的布局不再是以驾驶为中心,而是会注重空间属性,有了滑板式底盘,可以为上部车舱的开发提供更多的可能。如上图,当然我们看滑板底盘,不要上来就被「噢,就是非承载车身啊」的第一印象框住。当年没有电动车,所以没有几百公斤的电池包,没有能取消转向柱的线传转向系统,没有线传制动系

01线控技术认知线控技术(XbyWire),是将驾驶员的操作动作经过传感器转变成电信号来实现传递控制,替代传统机械系统或者液压系统,并由电信号直接控制执行机构以实现控制目的,基本原理如图1所示。该技术源于美国国家航空航天局(NationalAeronauticsandSpaceAdministration,NASA)1972年推出的线控飞行技术(FlybyWire)的飞机。其中,“X”就像数学方程中的未知数,代表汽车中传统上由机械或液压控制的各个部件及相关的操作。图1线控技术的基本原理

控制是驱使车辆前行的策略。控制的目标是使用可行的控制量,最大限度地降低与目标轨迹的偏差、最大限度地提供乘客的舒适度等。如上图所示,与控制模块输入相关联的模块有规划模块、定位模块和车辆信息等。其中定位模块提供车辆的位置信息,规划模块提供目标轨迹信息,车辆信息则包括档位、速度、加速度等。控制输出量则为转向、加速和制动量。控制模块主要分为横向控制和纵向控制,根据耦合形式的不同可以分为独立和一体化两种方法。1 控制方法1.1 解耦控制所谓解耦控制,就是将横向和纵向控制方法独立分开进行控制。1.2 耦合控

驾驶员监控系统,缩写DMS,是英文Driver Monitor System的缩写,即驾驶员监控系统。主要是实现对驾驶员的身份识别、驾驶员疲劳驾驶以及危险行为的检测功能。福特DMS系统01 法规加持,DMS进入发展快车道在现阶段开始量产的L2-L3级自动驾驶中,其实都只有在特定条件下才可以实行,很多状况下需要驾驶员能及时接管车辆进行处置。因此,在驾驶员太信任自动驾驶而放弃或减弱对驾驶过程的掌控时可能会导致某些事故的发生。而DMS-驾驶员监控系统的引入可以有效减轻这一问题的出现。麦格纳DMS系统,

人工智能领域的下一个发展机会,有可能是给AI模型装上一个「身体」,与真实世界进行互动来学习。相比现有的自然语言处理、计算机视觉等在特定环境下执行的任务来说,开放领域的机器人技术显然更难。比如prompt-based学习可以让单个语言模型执行任意的自然语言处理任务,比如写代码、做文摘、问答,只需要修改prompt即可。但机器人技术中的任务规范种类更多,比如模仿单样本演示、遵照语言指示或者实现某一视觉目标,这些通常都被视为不同的任务,由专门训练后的模型来处理。最近来自英伟达、斯坦福大学、玛卡莱斯特学

在GitHub上,AutoGPT的star量已经破10万。这是一种新型人机交互方式:你不用告诉AI先做什么,再做什么,而是给它制定一个目标就好,哪怕像「创造世界上最好的冰淇淋」这样简单。类似的项目还有BabyAGI等等。这股自主智能体浪潮意味着什么?它们是怎么运行的?它们在未来会是什么样子?现阶段如何尝试这项新技术?在这篇文章中,OctaneAI首席执行官、联合创始人MattSchlicht进行了详细介绍。人工智能可以用来完成非常具体的任务,比如推荐内容、撰写文案、回答问题,甚至生成与现实生活无


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

WebStorm Mac version
Useful JavaScript development tools

Dreamweaver CS6
Visual web development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Chinese version
Chinese version, very easy to use
