search
HomeTechnology peripheralsAISpecifically designed for decision trees, National University of Singapore & Tsinghua University jointly propose a fast and secure new federated learning system

Federated learning is a very hot field in machine learning, which refers to the joint training of models by multiple parties without transferring data. With the development of federated learning, federated learning systems are emerging one after another, such as FATE, FedML, PaddleFL, TensorFlow-Federated and so on. However, most federated learning systems do not support federated learning training of tree models. Compared with neural networks, tree models have the characteristics of fast training, strong interpretability, and suitable for tabular data. Tree models have a wide range of application scenarios in finance, medical care, the Internet and other fields, such as advertising recommendations, stock predictions, etc.

The representative model of decision tree is Gradient Boosting Decision Tree (GBDT). Since the prediction ability of one tree is limited, GBDT trains multiple trees in series through the boosting method, and finally achieves a good prediction effect by fitting each tree to the residual of the current prediction value and label value. Representative GBDT systems include XGBoost, LightGBM, CatBoost, and ThunderGBM. Among them, XGBoost has been used by the KDD cup championship team many times. However, none of these systems support GBDT training in federated learning scenarios. Recently, researchers from the National University of Singapore and Tsinghua University proposed a new federated learning system FedTree that focuses on training tree models.

Specifically designed for decision trees, National University of Singapore & Tsinghua University jointly propose a fast and secure new federated learning system

  • Paper address: https://github.com/Xtra-Computing/FedTree/blob/main/FedTree_draft_paper. pdf
  • Project address: https://github.com/Xtra-Computing/FedTree

FedTree system introductionFedTree architecture diagram is shown in Figure 1. There are 5 modules in total: interface, environment, framework, privacy protection and model.

Specifically designed for decision trees, National University of Singapore & Tsinghua University jointly propose a fast and secure new federated learning system

Figure 1: FedTree system architecture diagram

Interface: FedTree supports two interfaces: command line interface and Python interface. Users only need to provide parameters (number of participants, federation scenario, etc.) and can run FedTree for training with a one-line command. FedTree's Python interface is compatible with scikit-learn, and you can call fit() and predict() for training and prediction.

Environment: FedTree supports simulated deployment of federated learning on a single machine and deployment of distributed federation on multiple machines study. In a stand-alone environment, FedTree supports dividing data into multiple sub-data sets, and each sub-data set is trained as a participant. In a multi-machine environment, FedTree supports each machine as a participant, and machines communicate through gRPC. At the same time, in addition to CPU, FedTree supports the use of GPU to accelerate training.

Framework: FedTree supports the training of GBDT in horizontal and vertical federated learning scenarios. In the horizontal scenario, different participants have different training samples and the same feature space. In the vertical scenario, different participants have different feature spaces and the same training samples. In order to ensure performance, in both scenarios, multiple parties participate in the training of each node. In addition, FedTree also supports ensemble learning, where participants train trees in parallel and then aggregate them to reduce communication overhead between participants.

Privacy: Since the gradient passed during training may leak information about the training data, FedTree provides different Privacy-preserving methods to further protect gradient information include homomorphic encryption (HE) and secure aggregation (SA). At the same time, FedTree provides differential privacy to protect the final trained model.

Model: Based on training a tree, FedTree supports training GBDT through boosting/bagging method /random forest. By setting different loss functions, the model trained by FedTree supports a variety of tasks, including classification and regression.

ExperimentTable 1 summarizes the AUC of different systems on a9a, breast and credit and the RMSE on abalone, the model effect of FedTree and training GBDT (XGBoost, ThunderGBM) with all data and SecureBoost (SBT) in FATE is almost identical. Moreover, the privacy protection policies SA and HE do not affect the model performance.

Specifically designed for decision trees, National University of Singapore & Tsinghua University jointly propose a fast and secure new federated learning system

Table 1: Comparison of model effects of different systems

Table 2 summarizes the training time (unit: seconds) of each tree in different systems. It can be seen that FedTree is much faster than FATE, and can achieve an acceleration ratio of more than 100 times in a horizontal federated learning scenario.

Specifically designed for decision trees, National University of Singapore & Tsinghua University jointly propose a fast and secure new federated learning system

Table 2: Comparison of training time for each tree in different systems

For more research details, please refer to the original FedTree paper.

The above is the detailed content of Specifically designed for decision trees, National University of Singapore & Tsinghua University jointly propose a fast and secure new federated learning system. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
AI For Runners And Athletes: We're Making Excellent ProgressAI For Runners And Athletes: We're Making Excellent ProgressApr 22, 2025 am 11:12 AM

There were some very insightful perspectives in this speech—background information about engineering that showed us why artificial intelligence is so good at supporting people’s physical exercise. I will outline a core idea from each contributor’s perspective to demonstrate three design aspects that are an important part of our exploration of the application of artificial intelligence in sports. Edge devices and raw personal data This idea about artificial intelligence actually contains two components—one related to where we place large language models and the other is related to the differences between our human language and the language that our vital signs “express” when measured in real time. Alexander Amini knows a lot about running and tennis, but he still

Jamie Engstrom On Technology, Talent And Transformation At CaterpillarJamie Engstrom On Technology, Talent And Transformation At CaterpillarApr 22, 2025 am 11:10 AM

Caterpillar's Chief Information Officer and Senior Vice President of IT, Jamie Engstrom, leads a global team of over 2,200 IT professionals across 28 countries. With 26 years at Caterpillar, including four and a half years in her current role, Engst

New Google Photos Update Makes Any Photo Pop With Ultra HDR QualityNew Google Photos Update Makes Any Photo Pop With Ultra HDR QualityApr 22, 2025 am 11:09 AM

Google Photos' New Ultra HDR Tool: A Quick Guide Enhance your photos with Google Photos' new Ultra HDR tool, transforming standard images into vibrant, high-dynamic-range masterpieces. Ideal for social media, this tool boosts the impact of any photo,

What are the TCL Commands in SQL? - Analytics VidhyaWhat are the TCL Commands in SQL? - Analytics VidhyaApr 22, 2025 am 11:07 AM

Introduction Transaction Control Language (TCL) commands are essential in SQL for managing changes made by Data Manipulation Language (DML) statements. These commands allow database administrators and users to control transaction processes, thereby

How to Make Custom ChatGPT? - Analytics VidhyaHow to Make Custom ChatGPT? - Analytics VidhyaApr 22, 2025 am 11:06 AM

Harness the power of ChatGPT to create personalized AI assistants! This tutorial shows you how to build your own custom GPTs in five simple steps, even without coding skills. Key Features of Custom GPTs: Create personalized AI models for specific t

Difference Between Method Overloading and OverridingDifference Between Method Overloading and OverridingApr 22, 2025 am 10:55 AM

Introduction Method overloading and overriding are core object-oriented programming (OOP) concepts crucial for writing flexible and efficient code, particularly in data-intensive fields like data science and AI. While similar in name, their mechanis

Difference Between SQL Commit and SQL RollbackDifference Between SQL Commit and SQL RollbackApr 22, 2025 am 10:49 AM

Introduction Efficient database management hinges on skillful transaction handling. Structured Query Language (SQL) provides powerful tools for this, offering commands to maintain data integrity and consistency. COMMIT and ROLLBACK are central to t

PySimpleGUI: Simplifying GUI Development in Python - Analytics VidhyaPySimpleGUI: Simplifying GUI Development in Python - Analytics VidhyaApr 22, 2025 am 10:46 AM

Python GUI Development Simplified with PySimpleGUI Developing user-friendly graphical interfaces (GUIs) in Python can be challenging. However, PySimpleGUI offers a streamlined and accessible solution. This article explores PySimpleGUI's core functio

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor