search
HomeTechnology peripheralsAILearning like a baby, DeepMind's new model learns the rules of the physical world in 28 hours

​Deepmind aims to build a model that can learn intuitive physics and analyze why the model achieves this ability.

From AlphaFold to mathematical reasoning, DeepMind has been trying to combine AI and basic science. Now, DeepMind has created a new model that can learn simple physical rules.

Developmental psychologists tested and analyzed how babies follow the movement of objects through their gaze. For example, children expressed surprise when a video was played in which a ball suddenly disappeared.

Computer scientist Luis Piloto of DeepMind and colleagues hope to develop similar tests for artificial intelligence (AI). The team trained a neural network using videos of animations of simple objects like cubes and balls, and the model learned by discovering patterns in large amounts of data. The research paper was published July 11 in Nature Human Behavior.

Learning like a baby, DeepMinds new model learns the rules of the physical world in 28 hours

  • Paper address: https://www.nature.com/articles/s41562-022-01394 -8
  • Dataset address: https://github.com/deepmind/physical_concepts

This model performs physical learning by automatically encoding and tracking objects, Hence the name PLATO (Physics Learning through Auto-encoding and Tracking Objects). PLATO receives the original image from the video and a version of the image that highlights the targets of each object in the scene. PLATO aims to develop internal representations of the physical properties of objects, such as their position and velocity.

The system was trained on approximately 30 hours of videos showing simple motion mechanisms (such as a ball rolling down a slope) and developed the ability to predict how these objects would behave in different situations. . In particular, PLATO learns continuity and robustness to ensure that the trajectory of the target is uninterrupted and the shape of the object is persistent. As the video plays, the model's predictions become more accurate.

When playing videos with "impossible" events, such as an object suddenly disappearing, PLATO can measure the difference between the video and its own predictions, thus providing a measure of "surprise."

Piloto said: "PLATO was not designed as a model of infant behavior, but it can test hypotheses about how human infants learn. We hope that cognitive scientists will eventually use it to simulate infant behavior."

Jeff Clune, a computer scientist at the University of British Columbia, said, "Comparing AI with the learning methods of human infants is an important research direction. PLATO researchers hand-designed much of the prior knowledge that gives the artificial intelligence model advantages." Researchers like Clune are trying to let programs develop their own algorithms to understand the physical world.

Using knowledge from developmental psychology

In order to pursue richer physical intuition in AI systems, DeepMind’s research team draws inspiration from developmental psychology. The research team built a deep learning system that incorporates a core insight from developmental psychology, namely that physics is understood at the level of discrete objects and their interactions.

The core of intuitive physics relies on a discrete set of concepts (e.g., object persistence, solidity, continuity, etc.) that can be distinguished, manipulated, and individually detected. Traditional, standard approaches to AI learning intuitive physics learn about the physical world through video or state predictors, binary outcome predictions, question-answer performance, or reinforcement learning tasks. These approaches appear to require understanding some aspects of intuitive physics but do not explicitly operationalize or strategically explore a clear set of concepts.

Developmental psychology, on the other hand, holds that a physical concept corresponds to a set of expectations about how the future will unfold. For example, people expect that objects will not magically teleport from one place to another suddenly, but will trace a continuous path through time and space, which leads to the concept of continuity. Therefore, there is a way to measure knowledge of specific physical concepts: the Violation of Expectations (VoE) paradigm.

When exploring a specific concept using the VoE paradigm, researchers show infants visually similar arrays (called probes) that are either consistent (physically possible) or inconsistent (physically unlikely) with the physical concept. possible). In this paradigm, “surprise” is measured by gaze duration.

Learning like a baby, DeepMinds new model learns the rules of the physical world in 28 hours

Method Introduction

First of all, DeepMind proposed a very rich video corpus-Physical Concepts data set. This dataset contains VoE probe videos targeting five important physical concepts considered core elements in developmental psychology, including continuity, goal persistence, and robustness. The fourth is immutability, which captures the concept that certain target properties (such as shape) do not change; the fifth concept is directional inertia, which involves the expectation that a moving object will change in a direction consistent with the principle of inertia.

The most important thing is that the Physical Concepts dataset also includes a separate video corpus as training data. These videos demonstrate various procedurally generated physics events.

Learning like a baby, DeepMinds new model learns the rules of the physical world in 28 hours

Figure 2: Example of video dataset used to train the model

PLATO model architecture

Deepmind aims to build an intuitive learning model of physics, and analyze why the model achieves this capability. Some advanced systems in the field of AI are instantiated in the PLATO model.

The first is the target personalization process. The target personalization process cuts the visual continuous sensory input into a set of discrete entities, where each entity has a corresponding set of attributes. In PLATO, each segmented video frame is decomposed into a set of target codes (Fig. 3a-c) by the perceptual module, enabling mapping from visual input to individual targets. PLATO does not learn to segment the scene, but given a segmentation target, it learns a compressed representation.

Secondly, target tracking (or target index) assigns an index to each target, thereby achieving the correspondence between target perception and dynamic attribute calculation across time (Figure 3b, c) . In PLATO, target code is accumulated and tracked over frames in the target buffer (Figure 3d).

The last component is the relationship processing of these tracked targets. This process is inspired by the "physical reasoning system" proposed in developmental psychology, which can dynamically process the relationship between objects. Representations, generating new representations that are affected by relationships and interactions between objects and other objects.

PLATO learns the interaction between target memory and target perception history (Figure 3d) to generate predicted video frames for the next target and update target-based memory.

Learning like a baby, DeepMinds new model learns the rules of the physical world in 28 hours

Figure 3: PLATO includes two components: perception module (left) and dynamic prediction (right)

Experimental results

In When tested, PLATO showed strong VoE effects in all five detection categories when trained with five different random seeds.

Learning like a baby, DeepMinds new model learns the rules of the physical world in 28 hours

Figure 5: PLATO shows robust performance in probing the Physical Concepts dataset.

The training corpus in the Physical Concepts dataset contains a total of 300,000 videos. Using conservative calculations, that's approximately 52 days of continuous visual experience. From an AI and development perspective, there's the question of how much training data is actually needed to produce a VoE effect in testing. To evaluate this, Deepmind trained random seeds of three PLATO dynamic predictors on datasets of decreasing size (Figure 6), calculating a grand average of the VoE effects across all five detection classes.

Results show robust VoE effects in Deepmind’s models after training with as few as 50,000 examples (equivalent to 28 hours of visual experience) .

Learning like a baby, DeepMinds new model learns the rules of the physical world in 28 hours

Figure 6: PLATO shows powerful results in just 28 hours of visual experience.

Generalization testing: Deepmind uses the ADEPT dataset, which is designed to explore intuitive physical knowledge. As shown in Figure 7, PLATO shows clear VoE effects for all three detection categories.

Learning like a baby, DeepMinds new model learns the rules of the physical world in 28 hours

Figure 7: PLATO demonstrates robust effects on unseen targets and dynamics without any retraining.

For more information, please view the original paper. ​

The above is the detailed content of Learning like a baby, DeepMind's new model learns the rules of the physical world in 28 hours. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
ai合并图层的快捷键是什么ai合并图层的快捷键是什么Jan 07, 2021 am 10:59 AM

ai合并图层的快捷键是“Ctrl+Shift+E”,它的作用是把目前所有处在显示状态的图层合并,在隐藏状态的图层则不作变动。也可以选中要合并的图层,在菜单栏中依次点击“窗口”-“路径查找器”,点击“合并”按钮。

ai橡皮擦擦不掉东西怎么办ai橡皮擦擦不掉东西怎么办Jan 13, 2021 am 10:23 AM

ai橡皮擦擦不掉东西是因为AI是矢量图软件,用橡皮擦不能擦位图的,其解决办法就是用蒙板工具以及钢笔勾好路径再建立蒙板即可实现擦掉东西。

谷歌超强AI超算碾压英伟达A100!TPU v4性能提升10倍,细节首次公开谷歌超强AI超算碾压英伟达A100!TPU v4性能提升10倍,细节首次公开Apr 07, 2023 pm 02:54 PM

虽然谷歌早在2020年,就在自家的数据中心上部署了当时最强的AI芯片——TPU v4。但直到今年的4月4日,谷歌才首次公布了这台AI超算的技术细节。论文地址:https://arxiv.org/abs/2304.01433相比于TPU v3,TPU v4的性能要高出2.1倍,而在整合4096个芯片之后,超算的性能更是提升了10倍。另外,谷歌还声称,自家芯片要比英伟达A100更快、更节能。与A100对打,速度快1.7倍论文中,谷歌表示,对于规模相当的系统,TPU v4可以提供比英伟达A100强1.

ai可以转成psd格式吗ai可以转成psd格式吗Feb 22, 2023 pm 05:56 PM

ai可以转成psd格式。转换方法:1、打开Adobe Illustrator软件,依次点击顶部菜单栏的“文件”-“打开”,选择所需的ai文件;2、点击右侧功能面板中的“图层”,点击三杠图标,在弹出的选项中选择“释放到图层(顺序)”;3、依次点击顶部菜单栏的“文件”-“导出”-“导出为”;4、在弹出的“导出”对话框中,将“保存类型”设置为“PSD格式”,点击“导出”即可;

GPT-4的研究路径没有前途?Yann LeCun给自回归判了死刑GPT-4的研究路径没有前途?Yann LeCun给自回归判了死刑Apr 04, 2023 am 11:55 AM

Yann LeCun 这个观点的确有些大胆。 「从现在起 5 年内,没有哪个头脑正常的人会使用自回归模型。」最近,图灵奖得主 Yann LeCun 给一场辩论做了个特别的开场。而他口中的自回归,正是当前爆红的 GPT 家族模型所依赖的学习范式。当然,被 Yann LeCun 指出问题的不只是自回归模型。在他看来,当前整个的机器学习领域都面临巨大挑战。这场辩论的主题为「Do large language models need sensory grounding for meaning and u

ai顶部属性栏不见了怎么办ai顶部属性栏不见了怎么办Feb 22, 2023 pm 05:27 PM

ai顶部属性栏不见了的解决办法:1、开启Ai新建画布,进入绘图页面;2、在Ai顶部菜单栏中点击“窗口”;3、在系统弹出的窗口菜单页面中点击“控制”,然后开启“控制”窗口即可显示出属性栏。

ai移动不了东西了怎么办ai移动不了东西了怎么办Mar 07, 2023 am 10:03 AM

ai移动不了东西的解决办法:1、打开ai软件,打开空白文档;2、选择矩形工具,在文档中绘制矩形;3、点击选择工具,移动文档中的矩形;4、点击图层按钮,弹出图层面板对话框,解锁图层;5、点击选择工具,移动矩形即可。

强化学习再登Nature封面,自动驾驶安全验证新范式大幅减少测试里程强化学习再登Nature封面,自动驾驶安全验证新范式大幅减少测试里程Mar 31, 2023 pm 10:38 PM

引入密集强化学习,用 AI 验证 AI。 自动驾驶汽车 (AV) 技术的快速发展,使得我们正处于交通革命的风口浪尖,其规模是自一个世纪前汽车问世以来从未见过的。自动驾驶技术具有显着提高交通安全性、机动性和可持续性的潜力,因此引起了工业界、政府机构、专业组织和学术机构的共同关注。过去 20 年里,自动驾驶汽车的发展取得了长足的进步,尤其是随着深度学习的出现更是如此。到 2015 年,开始有公司宣布他们将在 2020 之前量产 AV。不过到目前为止,并且没有 level 4 级别的 AV 可以在市场

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)