search
HomeBackend DevelopmentGolangIn-depth introduction to the usage of golang slicing

[Introduction]

Go language is a C family programming language. It has the characteristics of efficiency, simplicity, safety, etc., and it also has some characteristics of modern programming languages. In the Go language, slice is a very important data type and is widely used in many situations. In this article, we will introduce the usage of slices in golang in depth to help everyone better understand the usage of slices in golang.

[1. Basic definition of slicing]

First, let us take a look at the basic definition of slicing in golang. In the Go language, a slice is a structure containing three fields: a pointer to an element of the array, length and capacity. When creating a slice, we need to use the built-in make() function, which has the following format:

func make([]T, len, cap) []T

Among them, T represents the element type of the slice, len represents the length of the slice, and cap represents the capacity of the slice. . When using the make() function, if the capacity is not specified, the capacity is equal to the length.

Specifically, we can create a slice through the following code:

a := make([]int, 5) //创建一个长度为5的int类型切片
b := make([]int, 3, 5) //创建一个长度为3,容量为5的int类型切片

As you can see, the make() function will return a new slice, which we can assign to a variable Perform operations.

[2. Basic operations of slicing]

After defining the slice, we can perform some basic operations on the slice. Below, we will introduce in detail the common operations of slicing in golang.

[2.1 Slice access and traversal]

First of all, we can access the elements in the slice through indexing. Like arrays, slice indexes in golang also start from 0. For example:

a := []int{1, 2, 3}
fmt.Println(a[0]) //输出1
fmt.Println(a[1]) //输出2
fmt.Println(a[2]) //输出3

At the same time, we can also use a for loop to traverse all the elements in the slice. For example:

a := []int{1, 2, 3}
for i:=0;i<len><p>In addition, golang also provides a range keyword, which we can use to traverse all elements in the slice. For example: </p>
<pre class="brush:php;toolbar:false">a := []int{1, 2, 3}
for i, v := range a {
    fmt.Println(i, v)
}

In the above code, i represents the index of the element, and v represents the value of the element.

[2.2 Slice append operation]

In golang, we can use the append() function to append new elements to the slice. This function has the following format:

func append(s []T, vs ...T) []T

where s represents the slice to be appended, and vs represents the element to be appended. In the append() function, we can pass one or more parameters and add them to the end of the slice. For example:

a := []int{1, 2, 3}
a = append(a, 4, 5, 6)
fmt.Println(a) //输出[1 2 3 4 5 6]

It should be noted that using the append() function will create a new slice. If the new slice needs to be assigned to a variable, then we need to reassign the variable, otherwise the original slice will not be changed.

[2.3 Slice copy operation]

In golang, we can use the copy() function to copy a slice. This function has the following format:

func copy(dst, src []T) int

where dst represents the target slice and src represents the source slice. When calling the copy() function, if the length of the target slice is smaller than the source slice, only the elements of the target slice length will be copied. For example:

a := []int{1, 2, 3}
b := make([]int, 2)
copy(b, a)
fmt.Println(b) //输出[1 2]

It should be noted that using the copy() function will also create a new slice.

[3. Slice expansion]

When appending elements to a slice, if the slice no longer has enough space, golang will automatically expand the slice. When expanding, golang will double the capacity of the slice and create a new underlying array. At the same time, golang will also copy the elements in the original slice to the new underlying array.

It should be noted that during expansion, if the length of the new underlying array is too long, golang will select the length of the new underlying array based on the number of elements in the current slice. Specifically, golang will make a selection based on the following rules:

  • If the number of elements in the slice is less than 1024, the length of the new underlying array is equal to twice the original length;
  • If If the number of elements in the slice is greater than or equal to 1024, the length of the new underlying array is equal to 1.25 times the original.

After understanding the expansion mechanism of slices in golang, we can make better use of slices and improve the efficiency of the program.

[4. Memory management of slices]

When using slices, we need to pay attention to memory management issues. In golang, the underlying slice corresponds to an array. When the slice is assigned to another variable, its underlying array will also be copied. For example:

a := []int{1, 2, 3}
b := a //将a赋值给b
b[0] = 4 //改变b中的第一个元素
fmt.Println(a) //输出[1 2 3]
fmt.Println(b) //输出[4 2 3]

It should be noted that if a slice is passed as a parameter to a function, since the underlying layer of the slice corresponds to an array, modifying the elements of the slice in the function will also affect the original slice. For example:

func changeSlice(a []int) {
    a[0] = 4 //修改a中的第一个元素
}

b := []int{1, 2, 3}
changeSlice(b)
fmt.Println(b) //输出[4 2 3]

After understanding the memory management issues of slicing and underlying arrays, we can better use slicing, improve program efficiency, and avoid unexpected effects on the underlying array.

[Conclusion]

Slice is a very important data type in golang and is widely used on many occasions. In this article, we introduce in detail the basic definition, operation, expansion and memory management of slices in golang. I hope this article can help you further understand the usage of slices in golang, so as to better use slices to develop efficient programs.

The above is the detailed content of In-depth introduction to the usage of golang slicing. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Choosing Between Golang and Python: The Right Fit for Your ProjectChoosing Between Golang and Python: The Right Fit for Your ProjectApr 19, 2025 am 12:21 AM

Golangisidealforperformance-criticalapplicationsandconcurrentprogramming,whilePythonexcelsindatascience,rapidprototyping,andversatility.1)Forhigh-performanceneeds,chooseGolangduetoitsefficiencyandconcurrencyfeatures.2)Fordata-drivenprojects,Pythonisp

Golang: Concurrency and Performance in ActionGolang: Concurrency and Performance in ActionApr 19, 2025 am 12:20 AM

Golang achieves efficient concurrency through goroutine and channel: 1.goroutine is a lightweight thread, started with the go keyword; 2.channel is used for secure communication between goroutines to avoid race conditions; 3. The usage example shows basic and advanced usage; 4. Common errors include deadlocks and data competition, which can be detected by gorun-race; 5. Performance optimization suggests reducing the use of channel, reasonably setting the number of goroutines, and using sync.Pool to manage memory.

Golang vs. Python: Which Language Should You Learn?Golang vs. Python: Which Language Should You Learn?Apr 19, 2025 am 12:20 AM

Golang is more suitable for system programming and high concurrency applications, while Python is more suitable for data science and rapid development. 1) Golang is developed by Google, statically typing, emphasizing simplicity and efficiency, and is suitable for high concurrency scenarios. 2) Python is created by Guidovan Rossum, dynamically typed, concise syntax, wide application, suitable for beginners and data processing.

Golang vs. Python: Performance and ScalabilityGolang vs. Python: Performance and ScalabilityApr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang vs. Other Languages: A ComparisonGolang vs. Other Languages: A ComparisonApr 19, 2025 am 12:11 AM

Go language has unique advantages in concurrent programming, performance, learning curve, etc.: 1. Concurrent programming is realized through goroutine and channel, which is lightweight and efficient. 2. The compilation speed is fast and the operation performance is close to that of C language. 3. The grammar is concise, the learning curve is smooth, and the ecosystem is rich.

Golang and Python: Understanding the DifferencesGolang and Python: Understanding the DifferencesApr 18, 2025 am 12:21 AM

The main differences between Golang and Python are concurrency models, type systems, performance and execution speed. 1. Golang uses the CSP model, which is suitable for high concurrent tasks; Python relies on multi-threading and GIL, which is suitable for I/O-intensive tasks. 2. Golang is a static type, and Python is a dynamic type. 3. Golang compiled language execution speed is fast, and Python interpreted language development is fast.

Golang vs. C  : Assessing the Speed DifferenceGolang vs. C : Assessing the Speed DifferenceApr 18, 2025 am 12:20 AM

Golang is usually slower than C, but Golang has more advantages in concurrent programming and development efficiency: 1) Golang's garbage collection and concurrency model makes it perform well in high concurrency scenarios; 2) C obtains higher performance through manual memory management and hardware optimization, but has higher development complexity.

Golang: A Key Language for Cloud Computing and DevOpsGolang: A Key Language for Cloud Computing and DevOpsApr 18, 2025 am 12:18 AM

Golang is widely used in cloud computing and DevOps, and its advantages lie in simplicity, efficiency and concurrent programming capabilities. 1) In cloud computing, Golang efficiently handles concurrent requests through goroutine and channel mechanisms. 2) In DevOps, Golang's fast compilation and cross-platform features make it the first choice for automation tools.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools