How to implement ocr (optical character recognition)? The following article will introduce to you how to use node to implement OCR. I hope it will be helpful to you!
#ocr is optical character recognition. Simply put, it is to recognize the text on the picture.
Unfortunately, I am just a low-level web programmer. I don’t know much about AI. If I want to implement OCR, I can only find a third-party library.
There are many third-party libraries for OCR in the python language. I have been looking for a third-party library for nodejs to implement OCR for a long time. Finally, I found that the library tesseract.js can still implement OCR very conveniently. [Related tutorial recommendations: nodejs video tutorial]
Effect display
Online example: http://www.lolmbbs.com/tool/ ocr
Detailed code
tesserract.js This library provides multiple versions to choose from. The one I use here is offline. Version tesseract.js-offline, after all, everyone suffers from bad network conditions. Default example code
const { createWorker } = require('tesseract.js'); const path = require('path'); const worker = createWorker({ langPath: path.join(__dirname, '..', 'lang-data'), logger: m => console.log(m), }); (async () => { await worker.load(); await worker.loadLanguage('eng'); await worker.initialize('eng'); const { data: { text } } = await worker.recognize(path.join(__dirname, '..', 'images', 'testocr.png')); console.log(text); await worker.terminate(); })();
1. Support multi-language recognition
tesseract.js offline version default example The code only supports recognition of English. If it recognizes Chinese, the result will be a bunch of question marks. But fortunately, you can import multiple trained language models to support recognition of multiple languages.
Download the corresponding language model you need from https://github.com/naptha/tessdata/tree/gh-pages/4.0.0 and put it in the root directory Under the lang-data directory
I chose Chinese (chi_sim.traineddata.gz
) Japanese (jpn.traineddata.gz
) English (eng.traineddata.gz
) Three-country language model.Modify the language item configuration of loading and initializing the model in the code to support Chinese, Japanese and English languages at the same time.
await worker.loadLanguage('chi_sim+jpn+eng'); await worker.initialize('chi_sim+jpn+eng');
In order to facilitate everyone's testing, I have included the training model, example code and test pictures in the three languages of China, Japan and Korea in the offline version of the example.
https://github.com/Selenium39/tesseract.js-offline
2. Improve recognition performance
If you run the offline version, you You will find that the loading of the model and the recognition of OCR are a bit slow. It can be optimized through these two steps.
In web projects, you can load the model as soon as the application starts, so that you don't have to wait for the model to be loaded when you receive an OCR request later.
Refer to Why I refactor tesseract.js v2? This blog, you can add multiple worker threads through the
createScheduler
method to process ocr requests concurrently.
Example of multi-threaded concurrent processing of OCR requests
const Koa = require('koa') const Router = require('koa-router') const router = new Router() const app = new Koa() const path = require('path') const moment = require('moment') const { createWorker, createScheduler } = require('tesseract.js') ;(async () => { const scheduler = createScheduler() for (let i = 0; i < 4; i++) { const worker = createWorker({ langPath: path.join(__dirname, '.', 'lang-data'), cachePath: path.join(__dirname, '.'), logger: m => console.log(`${moment().format('YYYY-MM-DD HH:mm:ss')}-${JSON.stringify(m)}`) }) await worker.load() await worker.loadLanguage('chi_sim+jpn+eng') await worker.initialize('chi_sim+jpn+eng') scheduler.addWorker(worker) } app.context.scheduler = scheduler })() router.get('/test', async (ctx) => { const { data: { text } } = await ctx.scheduler.addJob('recognize', path.join(__dirname, '.', 'images', 'chinese.png')) // await ctx.scheduler.terminate() ctx.body = text }) app.use(router.routes(), router.allowedMethods()) app.listen(3002)
Initiate concurrent requests, you can see multiple workers executing OCR tasks concurrently
ab -n 4 -c 4 localhost:3002/test
##3. Front-end code
The front-end code in the effect display is mainly implemented using the elementui component and the vue-cropper component. For the specific use of the vue-cropper component, please refer to my blog vue image cropping: Using vue-cropper for image croppingps: When uploading images, you can First load the base64 of the uploaded image on the front end, see the uploaded image first, and then request the backend to upload the image, which is better for the user experience.
The complete code is as follows<template> <div> <div style="margin-top:30px;height:500px"> <div class="show"> <vueCropper v-if="imgBase64" ref="cropper" :img="imgBase64" :output-size="option.size" :output-type="option.outputType" :info="true" :full="option.full" :can-move="option.canMove" :can-move-box="option.canMoveBox" :original="option.original" :auto-crop="option.autoCrop" :fixed="option.fixed" :fixed-number="option.fixedNumber" :center-box="option.centerBox" :info-true="option.infoTrue" :fixed-box="option.fixedBox" :max-img-size="option.maxImgSize" style="background-image:none" @mouseenter.native="enter" @mouseleave.native="leave" ></vueCropper> <el-upload v-else ref="uploader" class="avatar-uploader" drag multiple action="" :show-file-list="false" :limit="1" :http-request="upload" > <i class="el-icon-plus avatar-uploader-icon"></i> </el-upload> </div> <div class="ocr" @mouseleave="leaveCard" > <el-card v-for="(item,index) in ocrResult" :key="index" class="card-box" @mouseenter.native="enterCard(item)" > <el-form size="small" label-width="100px" label-position="left" > <el-form-item label="识别结果"> <el-input v-model="item.text"></el-input> </el-form-item> </el-form> </el-card> </div> </div> <div style="margin-top:10px"> <el-button size="small" type="primary" style="width:60%" @click="doOcr" > 文字识别(OCR) </el-button> </div> </div> </template> <script> import { uploadImage, ocr } from '../utils/api' export default { name: 'Ocr', data () { return { imgSrc: '', imgBase64: '', option: { info: true, // 裁剪框的大小信息 outputSize: 0.8, // 裁剪生成图片的质量 outputType: 'jpeg', // 裁剪生成图片的格式 canScale: false, // 图片是否允许滚轮缩放 autoCrop: true, // 是否默认生成截图框 fixedBox: false, // 固定截图框大小 不允许改变 fixed: false, // 是否开启截图框宽高固定比例 fixedNumber: [7, 5], // 截图框的宽高比例 full: true, // 是否输出原图比例的截图 canMove: false, // 时候可以移动原图 canMoveBox: true, // 截图框能否拖动 original: false, // 上传图片按照原始比例渲染 centerBox: true, // 截图框是否被限制在图片里面 infoTrue: true, // true 为展示真实输出图片宽高 false 展示看到的截图框宽高 maxImgSize: 10000 }, ocrResult: [] } }, methods: { upload (fileObj) { const file = fileObj.file const reader = new FileReader() reader.readAsDataURL(file) reader.onload = () => { this.imgBase64 = reader.result } const formData = new FormData() formData.append('image', file) uploadImage(formData).then(res => { this.imgUrl = res.imgUrl }) }, doOcr () { const cropAxis = this.$refs.cropper.getCropAxis() const imgAxis = this.$refs.cropper.getImgAxis() const cropWidth = this.$refs.cropper.cropW const cropHeight = this.$refs.cropper.cropH const position = [ (cropAxis.x1 - imgAxis.x1) / this.$refs.cropper.scale, (cropAxis.y1 - imgAxis.y1) / this.$refs.cropper.scale, cropWidth / this.$refs.cropper.scale, cropHeight / this.$refs.cropper.scale ] const rectangle = { top: position[1], left: position[0], width: position[2], height: position[3] } if (this.imgUrl) { ocr({ imgUrl: this.imgUrl, rectangle }).then(res => { this.ocrResult.push( { text: res.text, cropInfo: { //截图框显示的大小 width: cropWidth, height: cropHeight, left: cropAxis.x1, top: cropAxis.y1 }, realInfo: rectangle //截图框在图片上真正的大小 }) }) } }, enterCard (item) { this.$refs.cropper.goAutoCrop()// 重新生成自动裁剪框 this.$nextTick(() => { // if cropped and has position message, update crop box // 设置自动裁剪框的宽高和位置 this.$refs.cropper.cropOffsertX = item.cropInfo.left this.$refs.cropper.cropOffsertY = item.cropInfo.top this.$refs.cropper.cropW = item.cropInfo.width this.$refs.cropper.cropH = item.cropInfo.height }) }, leaveCard () { this.$refs.cropper.clearCrop() }, enter () { if (this.imgBase64 === '') { return } this.$refs.cropper.startCrop() // 开始裁剪 }, leave () { this.$refs.cropper.stopCrop()// 停止裁剪 } } } </script>More node related knowledge , please visit:
nodejs tutorial!
The above is the detailed content of A brief analysis of how node implements ocr. For more information, please follow other related articles on the PHP Chinese website!

JavaScript is widely used in websites, mobile applications, desktop applications and server-side programming. 1) In website development, JavaScript operates DOM together with HTML and CSS to achieve dynamic effects and supports frameworks such as jQuery and React. 2) Through ReactNative and Ionic, JavaScript is used to develop cross-platform mobile applications. 3) The Electron framework enables JavaScript to build desktop applications. 4) Node.js allows JavaScript to run on the server side and supports high concurrent requests.

Python is more suitable for data science and automation, while JavaScript is more suitable for front-end and full-stack development. 1. Python performs well in data science and machine learning, using libraries such as NumPy and Pandas for data processing and modeling. 2. Python is concise and efficient in automation and scripting. 3. JavaScript is indispensable in front-end development and is used to build dynamic web pages and single-page applications. 4. JavaScript plays a role in back-end development through Node.js and supports full-stack development.

C and C play a vital role in the JavaScript engine, mainly used to implement interpreters and JIT compilers. 1) C is used to parse JavaScript source code and generate an abstract syntax tree. 2) C is responsible for generating and executing bytecode. 3) C implements the JIT compiler, optimizes and compiles hot-spot code at runtime, and significantly improves the execution efficiency of JavaScript.

JavaScript's application in the real world includes front-end and back-end development. 1) Display front-end applications by building a TODO list application, involving DOM operations and event processing. 2) Build RESTfulAPI through Node.js and Express to demonstrate back-end applications.

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.