An article to talk about the auto-incrementing primary key in MySQL
This article will give you an in-depth understanding of the auto-incrementing primary key in MySQL. I hope it will be helpful to you!
#1. Where is the self-increased value stored?
Different engines have different strategies for saving auto-incremented values
1. The auto-incremented value of the MyISAM engine is stored in the data file
2.The auto-incremented value of the InnoDB engine , in MySQL5.7 and previous versions, the self-incremented value is stored in memory and is not persisted. After each restart, when you open the table for the first time, you will find the maximum value of the auto-increment max(id), and then use the max(id) step size as the current auto-increment value of the table
select max(ai_col) from table_name for update;
In MySQL8 .0 version records the changes in the self-increasing value in the redo log. When restarting, rely on the redo log to restore the value before restarting
2. Self-increasing value modification mechanism
If the field id is defined as AUTO_INCREMENT, when inserting a row of data, the behavior of auto-increment is as follows:
1. If the id field is specified as 0, null or unspecified value when inserting data, then this The current AUTO_INCREMENT value of the table is filled in the auto-increment field
2. If the id field specifies a specific value when inserting data, use the value specified in the statement directly
Assume that a certain value is to be inserted The value is X, and the current auto-increment value is Y
1. If The self-increment value is modified to a new self-increment value
The new self-increment value generation algorithm is: starting from auto_increment_offset (initial value), taking auto_increment_increment (step size) as the step size, and continuing to superpose until the first value is found. A value greater than Field, c is the only index. The table creation statement is as follows:CREATE TABLE `t` ( `id` int(11) NOT NULL AUTO_INCREMENT, `c` int(11) DEFAULT NULL, `d` int(11) DEFAULT NULL, PRIMARY KEY (`id`), UNIQUE KEY `c` (`c`) ) ENGINE=InnoDB;Assume that there is already a record (1,1,1) in table t, and then execute another insert data command:
insert into t values(null, 1, 1);The execution process is as follows:
1. The executor calls the InnoDB engine interface to write a row. The value of the passed row is (0,1,1)
2.InnoDB Find the value for which the auto-increment id is not specified, and obtain the current auto-increment value of table t 23. Change the value of the incoming row to (2,1,1)4 .Change the auto-increment value of the table to 35. Continue to insert data. Since the record of c=1 already exists, a Duplicate key error (unique key conflict) is reported, and the statement returns The corresponding execution flow chart is as follows:After that, when inserting a new data row, the auto-incremented ID obtained is 3. There is a situation where the auto-incrementing primary key is not continuous
Unique key conflicts and transaction rollbacks will lead to the situation where the auto-incrementing primary key id is not continuous
4. Optimization of lock increase
But in MySQL5. In version 0, the scope of self-increasing locks is statement level. In other words, if a statement applies for a table auto-increment lock, the lock will not be released until the statement is executed.
MySQL version 5.1.22 introduces a new strategy, a new parameter innodb_autoinc_lock_mode, the default value is 11. This parameter is set to 0, which means the strategy of the previous MySQL5.0 version is adopted, that is, the lock is released only after the statement is executed.
2. This parameter is set to 1In ordinary insert statements, the self-increasing lock is released immediately after the application.
For statements such as insert...select that insert data in batches, the self-increasing lock still has to wait until the statement is completed before being released
3. This parameter is set to 2. All actions for applying for an auto-incremented primary key are to release the lock after application. For the sake of data consistency, the default setting is 1- If sessionB releases the auto-increment lock immediately after applying for the auto-increment value, then the following situation may occur:
, sessionB continued to execute and inserted two records ( 4,3,3), (5,4,4)
- Ideas to solve this problem:
- 1) Let the original library insert data statements in batches to generate continuous id values. Therefore, the self-increasing lock is not released until the execution of the statement is completed, just to achieve this purpose
- 2) Record the operations of inserting data in the binlog truthfully, so that when the standby database is executed, it no longer relies on the self-increasing lock. Add primary key to generate. That is, set innodb_autoinc_lock_mode to 2 and binlog_format to row
如果有批量插入数据(insert … select、replace … select和load data)的场景时,从并发插入数据性能的角度考虑,建议把innodb_autoinc_lock_mode设置为2,同时binlog_format设置为row,这样做既能并发性,又不会出现数据一致性的问题
对于批量插入数据的语句,MySQL有一个批量申请自增id的策略:
1.语句执行过程中,第一次申请自增id,会分配1个
2.1个用完以后,这个语句第二次申请自增id,会分配2个
3.2个用完以后,还是这个语句,第三次申请自增id,会分配4个
4.依次类推,同一个语句去申请自增id,每次申请到的自增id个数都是上一次的两倍
insert into t values(null, 1,1); insert into t values(null, 2,2); insert into t values(null, 3,3); insert into t values(null, 4,4); create table t2 like t; insert into t2(c,d) select c,d from t; insert into t2 values(null, 5,5);
insert … select,实际上往表t2中插入了4行数据。但是,这四行数据是分三次申请的自增id,第一次申请到了id=1,第二次被分配了id=2和id=3,第三次被分配到id=4到id=7
由于这条语句实际上只用上了4个id,所以id=5到id=7就被浪费掉了。之后,再执行insert into t2 values(null, 5,5)
,实际上插入了的数据就是(8,5,5)
这是主键id出现自增id不连续的第三种原因
五、自增主键用完了
自增主键字段在达到定义类型上限后,再插入一行记录,则会报主键冲突的错误
CREATE TABLE t ( id INT UNSIGNED auto_increment PRIMARY KEY ) auto_increment = 4294967295; INSERT INTO t VALUES(NULL); INSERT INTO t VALUES(NULL);
第一个insert语句插入数据成功后,这个表的AUTO_INCREMENT没有改变(还是4294967295),就导致了第二个insert语句又拿到相同的自增id值,再试图执行插入语句,报主键冲突错误
【相关推荐:mysql视频教程】
The above is the detailed content of An article to talk about the auto-incrementing primary key in MySQL. For more information, please follow other related articles on the PHP Chinese website!

MySQL's position in databases and programming is very important. It is an open source relational database management system that is widely used in various application scenarios. 1) MySQL provides efficient data storage, organization and retrieval functions, supporting Web, mobile and enterprise-level systems. 2) It uses a client-server architecture, supports multiple storage engines and index optimization. 3) Basic usages include creating tables and inserting data, and advanced usages involve multi-table JOINs and complex queries. 4) Frequently asked questions such as SQL syntax errors and performance issues can be debugged through the EXPLAIN command and slow query log. 5) Performance optimization methods include rational use of indexes, optimized query and use of caches. Best practices include using transactions and PreparedStatemen

MySQL is suitable for small and large enterprises. 1) Small businesses can use MySQL for basic data management, such as storing customer information. 2) Large enterprises can use MySQL to process massive data and complex business logic to optimize query performance and transaction processing.

InnoDB effectively prevents phantom reading through Next-KeyLocking mechanism. 1) Next-KeyLocking combines row lock and gap lock to lock records and their gaps to prevent new records from being inserted. 2) In practical applications, by optimizing query and adjusting isolation levels, lock competition can be reduced and concurrency performance can be improved.

MySQL is not a programming language, but its query language SQL has the characteristics of a programming language: 1. SQL supports conditional judgment, loops and variable operations; 2. Through stored procedures, triggers and functions, users can perform complex logical operations in the database.

MySQL is an open source relational database management system, mainly used to store and retrieve data quickly and reliably. Its working principle includes client requests, query resolution, execution of queries and return results. Examples of usage include creating tables, inserting and querying data, and advanced features such as JOIN operations. Common errors involve SQL syntax, data types, and permissions, and optimization suggestions include the use of indexes, optimized queries, and partitioning of tables.

MySQL is an open source relational database management system suitable for data storage, management, query and security. 1. It supports a variety of operating systems and is widely used in Web applications and other fields. 2. Through the client-server architecture and different storage engines, MySQL processes data efficiently. 3. Basic usage includes creating databases and tables, inserting, querying and updating data. 4. Advanced usage involves complex queries and stored procedures. 5. Common errors can be debugged through the EXPLAIN statement. 6. Performance optimization includes the rational use of indexes and optimized query statements.

MySQL is chosen for its performance, reliability, ease of use, and community support. 1.MySQL provides efficient data storage and retrieval functions, supporting multiple data types and advanced query operations. 2. Adopt client-server architecture and multiple storage engines to support transaction and query optimization. 3. Easy to use, supports a variety of operating systems and programming languages. 4. Have strong community support and provide rich resources and solutions.

InnoDB's lock mechanisms include shared locks, exclusive locks, intention locks, record locks, gap locks and next key locks. 1. Shared lock allows transactions to read data without preventing other transactions from reading. 2. Exclusive lock prevents other transactions from reading and modifying data. 3. Intention lock optimizes lock efficiency. 4. Record lock lock index record. 5. Gap lock locks index recording gap. 6. The next key lock is a combination of record lock and gap lock to ensure data consistency.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SublimeText3 Chinese version
Chinese version, very easy to use

WebStorm Mac version
Useful JavaScript development tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft