This article is written by the golang tutorial column to introduce how to implement the user's daily limit in Go. I hope it will be helpful to friends in need!
Implement the user’s daily limit in Go (for example, you can only receive benefits three times a day)
If you write a bug management system and use this
PeriodLimit
, you can limit each tester to only submit one bug to you per day. Is work much easier? :P
The essential reason why microservice architecture is so popular nowadays is to reduce the overall complexity of the system, evenly distribute system risks to subsystems to maximize the stability of the system, and split it into different systems through domain division. After the subsystems are installed, each subsystem can be independently developed, tested, and released, and the R&D rhythm and efficiency can be significantly improved.
But it also brings problems, such as: the calling link is too long, the complexity of the deployment architecture increases, and various middleware needs to support distributed scenarios. In order to ensure the normal operation of microservices, service governance is indispensable, which usually includes: current limiting, downgrading, and circuit breaker.
Current limiting refers to limiting the frequency of interface calls to avoid exceeding the load limit and bringing down the system. For example:
E-commerce Flash Sale Scenario
API current limit for different merchants
Commonly used The current limiting algorithms are:
- Fixed time window current limiting
- Sliding time window current limiting
- Leaky bucket current limiting
- Token bucket limited Flow
This article mainly explains the fixed time window current limiting algorithm.
Working Principle
Starting from a certain point in time, each request comes with a request count of 1. At the same time, it is judged whether the number of requests in the current time window exceeds the limit. If it exceeds the limit, it will be rejected. The request is then cleared when the next time window begins waiting for the request.
Advantages and Disadvantages
Advantages
Easy to implement It is efficient and is especially suitable for limiting scenarios such as a user can only post 10 articles a day, can only send SMS verification codes 5 times, and can only try to log in 5 times. Such scenarios are very common in actual business.
Disadvantages
The disadvantage of fixed time window current limiting is that it cannot handle critical section request burst scenarios.
Assume that the current limit is 100 requests every 1 second, and the user initiates 200 requests within 1 second starting from the middle 500ms. At this time, all 200 requests can be passed. This is inconsistent with our expectation of limiting the current to 100 times per second. The root cause is that the fine-grainedness of the current limit is too coarse.
go-zero code implementation
Go-zero uses redis expiration time to simulate a fixed time window.##core/limit/periodlimit.go
redis lua script:-- KYES[1]:限流器key-- ARGV[1]:qos,单位时间内最多请求次数-- ARGV[2]:单位限流窗口时间-- 请求最大次数,等于p.quotalocal limit = tonumber(ARGV[1])-- 窗口即一个单位限流周期,这里用过期模拟窗口效果,等于p.permitlocal window = tonumber(ARGV[2])-- 请求次数+1,获取请求总数local current = redis.call("INCRBY",KYES[1],1)-- 如果是第一次请求,则设置过期时间并返回 成功if current == 1 then redis.call("expire",KYES[1],window) return 1-- 如果当前请求数量小于limit则返回 成功elseif current limit则返回 失败else return 0end
Fixed time window current limiter definitionPay attention to the align parameter, align= When true, the request upper limit will change periodically.type ( // PeriodOption defines the method to customize a PeriodLimit. // go中常见的option参数模式 // 如果参数非常多,推荐使用此模式来设置参数 PeriodOption func(l *PeriodLimit) // A PeriodLimit is used to limit requests during a period of time. // 固定时间窗口限流器 PeriodLimit struct { // 窗口大小,单位s period int // 请求上限 quota int // 存储 limitStore *redis.Redis // key前缀 keyPrefix string // 线性限流,开启此选项后可以实现周期性的限流 // 比如quota=5时,quota实际值可能会是5.4.3.2.1呈现出周期性变化 align bool } )
For example, when quota=5, the actual quota may be 5.4.3.2.1, showing periodic changes
Current limiting logicIn fact, the current limiting logic is above The lua script is implemented. It should be noted that the return value
- 0: indicates an error, such as redis failure or overload
- 1: allowed
- 2: allowed However, the upper limit has been reached in the current window. If you are running a batch business, you can sleep and wait for the next window (the author has considered it very carefully)
- 3: Rejection
// Take requests a permit, it returns the permit state. // 执行限流 // 注意一下返回值: // 0:表示错误,比如可能是redis故障、过载 // 1:允许 // 2:允许但是当前窗口内已到达上限 // 3:拒绝 func (h *PeriodLimit) Take(key string) (int, error) { // 执行lua脚本 resp, err := h.limitStore.Eval(periodScript, []string{h.keyPrefix + key}, []string{ strconv.Itoa(h.quota), strconv.Itoa(h.calcExpireSeconds()), }) if err != nil { return Unknown, err } code, ok := resp.(int64) if !ok { return Unknown, ErrUnknownCode } switch code { case internalOverQuota: return OverQuota, nil case internalAllowed: return Allowed, nil case internalHitQuota: return HitQuota, nil default: return Unknown, ErrUnknownCode } }
// 计算过期时间也就是窗口时间大小 // 如果align==true // 线性限流,开启此选项后可以实现周期性的限流 // 比如quota=5时,quota实际值可能会是5.4.3.2.1呈现出周期性变化 func (h *PeriodLimit) calcExpireSeconds() int { if h.align { now := time.Now() _, offset := now.Zone() unix := now.Unix() + int64(offset) return h.period - int(unix%int64(h.period)) } return h.period }Project addressgithub.com/zeromicro/go-zeroWelcome to use
go-zero and
star support us!
The above is the detailed content of How to implement user daily limit in Go. For more information, please follow other related articles on the PHP Chinese website!

Go uses the "encoding/binary" package for binary encoding and decoding. 1) This package provides binary.Write and binary.Read functions for writing and reading data. 2) Pay attention to choosing the correct endian (such as BigEndian or LittleEndian). 3) Data alignment and error handling are also key to ensure the correctness and performance of the data.

The"bytes"packageinGooffersefficientfunctionsformanipulatingbyteslices.1)Usebytes.Joinforconcatenatingslices,2)bytes.Bufferforincrementalwriting,3)bytes.Indexorbytes.IndexByteforsearching,4)bytes.Readerforreadinginchunks,and5)bytes.SplitNor

Theencoding/binarypackageinGoiseffectiveforoptimizingbinaryoperationsduetoitssupportforendiannessandefficientdatahandling.Toenhanceperformance:1)Usebinary.NativeEndianfornativeendiannesstoavoidbyteswapping.2)BatchReadandWriteoperationstoreduceI/Oover

Go's bytes package is mainly used to efficiently process byte slices. 1) Using bytes.Buffer can efficiently perform string splicing to avoid unnecessary memory allocation. 2) The bytes.Equal function is used to quickly compare byte slices. 3) The bytes.Index, bytes.Split and bytes.ReplaceAll functions can be used to search and manipulate byte slices, but performance issues need to be paid attention to.

The byte package provides a variety of functions to efficiently process byte slices. 1) Use bytes.Contains to check the byte sequence. 2) Use bytes.Split to split byte slices. 3) Replace the byte sequence bytes.Replace. 4) Use bytes.Join to connect multiple byte slices. 5) Use bytes.Buffer to build data. 6) Combined bytes.Map for error processing and data verification.

Go's encoding/binary package is a tool for processing binary data. 1) It supports small-endian and large-endian endian byte order and can be used in network protocols and file formats. 2) The encoding and decoding of complex structures can be handled through Read and Write functions. 3) Pay attention to the consistency of byte order and data type when using it, especially when data is transmitted between different systems. This package is suitable for efficient processing of binary data, but requires careful management of byte slices and lengths.

The"bytes"packageinGoisessentialbecauseitoffersefficientoperationsonbyteslices,crucialforbinarydatahandling,textprocessing,andnetworkcommunications.Byteslicesaremutable,allowingforperformance-enhancingin-placemodifications,makingthispackage

Go'sstringspackageincludesessentialfunctionslikeContains,TrimSpace,Split,andReplaceAll.1)Containsefficientlychecksforsubstrings.2)TrimSpaceremoveswhitespacetoensuredataintegrity.3)SplitparsesstructuredtextlikeCSV.4)ReplaceAlltransformstextaccordingto


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 English version
Recommended: Win version, supports code prompts!

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Mac version
God-level code editing software (SublimeText3)
