This article will take you through the module path analysis in Node.js and introduce the Node module path analysis method. I hope it will be helpful to everyone!
##requireCase
- There is currently a project
- Current project Path
- /Users/rainbow/Documents/front-end/scaffolding development/rainbow-test
- /bin/index.js
console.log(require.resolve(".")); // /Users/rainbow/Documents/前端/脚手架开发/rainbow-test/bin/index.js 输出bin/index.js的绝对路径 console.log(require.resolve.paths(".")); // [ '/Users/rainbow/Documents/前端/脚手架开发/rainbow-test/bin' ] 输出的文件可能在的路径的数组
console.log(require.resolve("yargs")); // /Users/rainbow/Documents/前端/脚手架开发/rainbow-test/node_modules/yargs/index.cjs console.log(require.resolve.paths("yargs")); /* [ '/Users/rainbow/Documents/前端/脚手架开发/rainbow-test/bin/node_modules', '/Users/rainbow/Documents/前端/脚手架开发/rainbow-test/node_modules', '/Users/rainbow/Documents/前端/脚手架开发/node_modules', '/Users/rainbow/Documents/前端/node_modules', '/Users/rainbow/Documents/node_modules', '/Users/rainbow/node_modules', '/Users/node_modules', '/node_modules', '/Users/rainbow/.node_modules', '/Users/rainbow/.node_libraries', '/usr/local/Cellar/node/14.3.0_1/lib/node' ] */
requireThe process of parsing and finding the module execution file
1、NodejsProject module path resolution is implemented through require.resolve.
- require.resolve is implemented through the
- Module._resolveFileName
method
- Module._resolveFileName
The core process is:
- Determine whether the path is a built-in module
- If not, use the
- Module._resolveLookupPahts
method to generate possible paths for node_modules, if the incoming path is '/test/lerna/cli. js', add the path array of
node_moduelsunder each level path
Query the real path of the module through - Module._findPath
,
Module._findPath The core process is:
- Query cache (generated by merging request and paths through
- \x00
)
Traverse the paths array generated by the - Module._resolveLookupPahts
method, and combine
pathand
requestto form the file path basePath
If - basePath
exists, call
fs.realPahtSyncto obtain the real path of the file
Cache the real path of the file to - Module._pathCache
(key is cacheKey) (Module._pathCache is a map)
fs.realPahtSyncCore process:
- Query cache ( The cached key is p. That is, the path generated in Module._findPath)
- Traverse the path string from left to right, query /, split the path, and determine whether the path is a soft link. If it is a soft link, The link queries the real link, generates a new path p, and then continues to traverse. Here is a detail:
- The sub-path base generated during the traversal process will be cached in knownHard and cache to avoid repeated queries
- After the traversal is completed, the real path corresponding to the module is obtained. At this time, the original path will be used as the key and the real path will be used as the value, which will be saved in the cache.
require.resolve. paths is equivalent to
Module._resolveLookupPaths. This method obtains all possible paths of node_modules to form an array.
require.resolve.pathsThe implementation principle is:
- If it is
- /
(root path), return
directly ['/node_modules'] Otherwise, traverse the path string from back to front. When / is queried, split the path, add node_modules at the end, and pass in a paths array until The paths array cannot be found/returned after querying
require uses the method of the built-in module
When we userequire('yargs')When
require method
- actually uses
- Module._load
method
Module.prototype.require = function(id) { //id = 'yargs' validateString(id, 'id'); if (id === '') { throw new ERR_INVALID_ARG_VALUE('id', id, 'must be a non-empty string'); } requireDepth++; try { return Module._load(id, this, /* isMain */ false); } finally { requireDepth--; } };
// 参数 id = 'yargs' this={ paths: Module._nodeModulePaths(process.cwd()) }
Module._nodeModulePathsMethod
##
// 进入mac电脑所在的逻辑: // from => /Users/rainbow/Documents/前端/脚手架开发/lerna源码/lernas //'from' is the __dirname of the module. Module._nodeModulePaths = function(from) { from = path.resolve(from); // Return early not only to avoid unnecessary work, but to *avoid* returning // an array of two items for a root: [ '//node_modules', '/node_modules' ] if (from === '/') return ['/node_modules']; const paths = []; // 关键算法代码 for (let i = from.length - 1, p = 0, last = from.length; i >= 0; --i) { const code = from.charCodeAt(i); if (code === CHAR_FORWARD_SLASH) { if (p !== nmLen) paths.push(from.slice(0, last) + '/node_modules'); last = i; p = 0; } else if (p !== -1) { if (nmChars[p] === code) { ++p; } else { p = -1; } } } // Append /node_modules to handle root paths. paths.push('/node_modules'); return paths; };

Module._loadMethod
The core implementation code is:
require.resolve
Project module path resolution is implemented through the require.resolve
method.
- Module._resolveFileName
- method,
// node.js内置模块require的源代码 function resolve(request, options) { validateString(request, 'request'); return Module._resolveFilename(request, mod, false, options); //核心实现 } require.resolve = resolve; function paths(request) { validateString(request, 'request'); return Module._resolveLookupPaths(request, mod); //核心代码 } resolve.paths = paths;
Module._resolveFileNameCore process
- If not, use the Module._resolveLookupPahts
- method to combine paths and Combine the paths in the environment
Query the real path of the module through
Module._findPath
Module._resolveFilename = function(request, parent, isMain, options) { if (NativeModule.canBeRequiredByUsers(request)) { //是否为内置模块 return request; } let paths; // 让paths和环境变量中的paths结合 paths = Module._resolveLookupPaths(request, parent); //核心代码 if (parent && parent.filename) { // 读取filename对应的package.json文件,看是否有exports字段,当前filename = false const filename = trySelf(parent.filename, request); if (filename) { //false const cacheKey = request + '\x00' + (paths.length === 1 ? paths[0] : paths.join('\x00')); Module._pathCache[cacheKey] = filename; return filename; } } //关键代码,找到本地执行文件 // Look up the filename first, since that's the cache key. const filename = Module._findPath(request, paths, isMain, false); if (filename) return filename; // ... };
Module._resolveLookupPahts
方法
- 生成要查找模块的所有路径上可能存在node_modules的路径数组
-
require.resolve.paths("yargs")
核心实现方法
生成
[ '/Users/rainbow/Documents/前端/脚手架开发/rainbow-test/bin/node_modules', '/Users/rainbow/Documents/前端/脚手架开发/rainbow-test/node_modules', '/Users/rainbow/Documents/前端/脚手架开发/node_modules', '/Users/rainbow/Documents/前端/node_modules', '/Users/rainbow/Documents/node_modules', '/Users/rainbow/node_modules', '/Users/node_modules', '/node_modules', '/Users/rainbow/.node_modules', '/Users/rainbow/.node_libraries', '/usr/local/Cellar/node/14.3.0_1/lib/node' ]
Module._resolveLookupPaths = function(request, parent) { if (NativeModule.canBeRequiredByUsers(request)) { debug('looking for %j in []', request); return null; } // Check for node modules paths. if (request.charAt(0) !== '.' || (request.length > 1 && request.charAt(1) !== '.' && request.charAt(1) !== '/' && (!isWindows || request.charAt(1) !== '\'))){ let paths = modulePaths; if (parent != null && parent.paths && parent.paths.length) { paths = parent.paths.concat(paths); } debug('looking for %j in %j', request, paths); return paths.length > 0 ? paths : null; } // In REPL, parent.filename is null. if (!parent || !parent.id || !parent.filename) { // Make require('./path/to/foo') work - normally the path is taken // from realpath(__filename) but in REPL there is no filename const mainPaths = ['.']; debug('looking for %j in %j', request, mainPaths); return mainPaths; } debug('RELATIVE: requested: %s from parent.id %s', request, parent.id); const parentDir = [path.dirname(parent.filename)]; debug('looking for %j', parentDir); return parentDir; };
Module._findPath
核心流程
- 查询缓存(将request和paths通过
\x00
合并生成cacheKey
)(\x00
是空格的16进制) - 遍历
Module._resolveLookupPahts
方法生成的paths
数组,将path
与request
组成文件路径basePath
- 如果basePath存在则调用
fs.realPahtSync
获取文件的真实路径
fs.realPahtSync
更多node相关知识,请访问:nodejs 教程!!
The above is the detailed content of An article to talk about module path analysis in Node.js. For more information, please follow other related articles on the PHP Chinese website!

JavaScript's application in the real world includes front-end and back-end development. 1) Display front-end applications by building a TODO list application, involving DOM operations and event processing. 2) Build RESTfulAPI through Node.js and Express to demonstrate back-end applications.

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

JavaScript's applications in the real world include server-side programming, mobile application development and Internet of Things control: 1. Server-side programming is realized through Node.js, suitable for high concurrent request processing. 2. Mobile application development is carried out through ReactNative and supports cross-platform deployment. 3. Used for IoT device control through Johnny-Five library, suitable for hardware interaction.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Dreamweaver CS6
Visual web development tools