


How does JavaScript handle parallel requests? Brief analysis of four methods
This article will let you know how JavaScript handles parallel requests? Introducing the four ways in which JS handles parallel requests, I hope it will be helpful to everyone!
Requirements
Two asynchronous requests are issued at the same time, and processing will be done when both requests return
Implementation
The method here only provides ideas and only handles successful request processing
Method 1
Use Promise.all
const startTime = new Date().getTime() function request(time) { return new Promise(resolve => { setTimeout(() => { resolve(time) }, time) }) } let request1 = request(3000) let request2 = request(2000) Promise.all([request1, request2]).then(res => { console.log(res, new Date() - startTime) // [ 3000, 2000 ] 3001 })
Method 2
Customize the status, judge the return status in the callback, and wait until both requests have return values before processing
const startTime = new Date().getTime() function request(time) { return new Promise(resolve => { setTimeout(() => { resolve(time) }, time) }) } let state = [undefined, undefined] let request1 = request(3000) let request2 = request(2000) request1.then(res => { state[0] = res process() }) request2.then(res => { state[1] = res process() }) function process() { if (state[0] && state[1]) { console.log(state, new Date() - startTime) // [ 3000, 2000 ] 3001 } }
Method 3
generator, yield
const startTime = new Date().getTime() function ajax(time, cb) { setTimeout(() => cb(time), time) } function request(time) { ajax(time, data => { it.next(data); }) } function* main() { let request1 = request(3000); let request2 = request(2000); let res1 = yield request1 let res2 = yield request2 console.log(res1, res2, new Date() - startTime) // 2000 3000 3001 } let it = main(); it.next();
There is something wrong with this place, Because request2 takes a short time, it will return first,
that is, execute it.next(2000) first, causing res1 to obtain the return value of request2
If you use the co function, this problem will not exist , because co executes it.next() in the promise.then function, which is equivalent to it.next() being a chain call
generator uses the co function
const co = require('co') const startTime = new Date().getTime() function request (time) { return new Promise(resolve => { setTimeout(() => { resolve(time) }, time) }) } co(function* () { let request1 = request(3000); let request2 = request(2000); let res1 = yield request1 let res2 = yield request2 console.log(res1, res2, new Date() - startTime) // 3000 2000 3001 })
With the co function, there is no need to generate it and execute the next method; The principle of co is actually simple, that is, recursively execute next until done is true; If the value returned by next is a Promise, execute next in the then function. If it is not a Promise, execute the next function directly. The following is a simplified handwritten implementation of the co function
function co(func) { let it = func() let t = it.next() next() function next() { if (t.done) return if (t.value instanceof Promise) { t.value.then(res => { t = it.next(res) next() }) } else { t = it.next(t.value) next() } } }
Method 4
With generator, it is easy to think of async/await, after all async/ Await is implemented by generator
// setTimeout模拟异步请求,time为请求耗时 const startTime = new Date().getTime() function request (time) { return new Promise(resolve => { setTimeout(() => { resolve(time) }, time) }) } (async function () { let request1 = request(3000) let request2 = request(2000) let res1 = await request1 console.log(res1, new Date() - startTime) // 3000 3001 let res2 = await request2 console.log(res2, new Date() - startTime) // 2000 3005 })()
For more programming-related knowledge, please visit:Programming Video! !
The above is the detailed content of How does JavaScript handle parallel requests? Brief analysis of four methods. For more information, please follow other related articles on the PHP Chinese website!

JavaScript is widely used in websites, mobile applications, desktop applications and server-side programming. 1) In website development, JavaScript operates DOM together with HTML and CSS to achieve dynamic effects and supports frameworks such as jQuery and React. 2) Through ReactNative and Ionic, JavaScript is used to develop cross-platform mobile applications. 3) The Electron framework enables JavaScript to build desktop applications. 4) Node.js allows JavaScript to run on the server side and supports high concurrent requests.

Python is more suitable for data science and automation, while JavaScript is more suitable for front-end and full-stack development. 1. Python performs well in data science and machine learning, using libraries such as NumPy and Pandas for data processing and modeling. 2. Python is concise and efficient in automation and scripting. 3. JavaScript is indispensable in front-end development and is used to build dynamic web pages and single-page applications. 4. JavaScript plays a role in back-end development through Node.js and supports full-stack development.

C and C play a vital role in the JavaScript engine, mainly used to implement interpreters and JIT compilers. 1) C is used to parse JavaScript source code and generate an abstract syntax tree. 2) C is responsible for generating and executing bytecode. 3) C implements the JIT compiler, optimizes and compiles hot-spot code at runtime, and significantly improves the execution efficiency of JavaScript.

JavaScript's application in the real world includes front-end and back-end development. 1) Display front-end applications by building a TODO list application, involving DOM operations and event processing. 2) Build RESTfulAPI through Node.js and Express to demonstrate back-end applications.

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver Mac version
Visual web development tools