


Introducing the use of python's statsmodels module to fit ARIMA models
Related free learning recommendations: python video tutorial
Import necessary packages and modules
from scipy import statsimport pandas as pdimport matplotlib.pyplot as pltimport statsmodels.api as smfrom statsmodels.tsa.arima.model import ARIMAfrom statsmodels.graphics.tsaplots import plot_predict plt.rcParams['font.sans-serif']=['simhei']#用于正常显示中文标签plt.rcParams['axes.unicode_minus']=False#用于正常显示负号
1. Read the data and draw the graph
data=pd.read_csv('数据/客运量.csv',index_col=0)data.index = pd.Index(sm.tsa.datetools.dates_from_range('1949', '2008'))#将时间列改为专门时间格式,方便后期操作data.plot(figsize=(12,8),marker='o',color='black',ylabel='客运量')#画图
#The passenger flow time series data used in this article: https://download.csdn.net/download/weixin_45590329 /14143811
#The time series line chart is as shown below. Obviously the data has an increasing trend, and the preliminary judgment is that the data is not stable
2. Stationarity test
sm.tsa.adfuller(data,regression='c')sm.tsa.adfuller(data,regression='nc')sm.tsa.adfuller(data,regression='ct')
is carried out Three forms of ADF unit root tests, as shown in some results, found that the sequence is not stationary
3. Perform first-order difference processing on the data
diff=data.diff(1)diff.dropna(inplace=True)diff.plot(figsize=(12,8),marker='o',color='black')#画图
Make a data Line chart after first-order difference, preliminary judgment is that it is stationary
4. Conduct stationarity test on the first-order difference data
sm.tsa.adfuller(diff,regression='c')sm.tsa.adfuller(diff,regression='nc')sm.tsa.adfuller(diff,regression='ct')
As shown in the figure, it shows that the sequence is stationary
5. Determine the order of ARIMA (p, d, q)
fig = plt.figure(figsize=(12,8))ax1 = fig.add_subplot(211)fig = sm.graphics.tsa.plot_acf(diff.values.squeeze(), lags=12, ax=ax1)#自相关系数图1阶截尾,决定MA(1)ax2 = fig.add_subplot(212)fig = sm.graphics.tsa.plot_pacf(diff, lags=12, ax=ax2)#偏相关系数图1阶截尾,决定AR(1)
According to the autocorrelation coefficient map ACF and the partial autocorrelation coefficient map PACF, determine the original data as ARIMA ( 1,1,1) Model
6. Parameter estimation
model = ARIMA(data, order=(1, 1, 1)).fit()#拟合模型model.summary()#统计信息汇总#系数检验params=model.params#系数tvalues=model.tvalues#系数t值bse=model.bse#系数标准误pvalues=model.pvalues#系数p值#绘制残差序列折线图resid=model.resid#残差序列fig = plt.figure(figsize=(12,8))ax = fig.add_subplot(111)ax = model.resid.plot(ax=ax)#计算模型拟合值fit=model.predict(exog=data[['TLHYL']])
7. Model test
#8.1.检验序列自相关sm.stats.durbin_watson(model.resid.values)#DW检验:靠近2——正常;靠近0——正自相关;靠近4——负自相关#8.2.AIC和BIC准则model.aic#模型的AIC值model.bic#模型的BIC值#8.3.残差序列正态性检验stats.normaltest(resid)#检验序列残差是否为正态分布#最终检验结果显示无法拒绝原假设,说明残差序列为正态分布,模型拟合良好#8.4.绘制残差序列自相关图和偏自相关图fig = plt.figure(figsize=(12,8))ax1 = fig.add_subplot(211)fig = sm.graphics.tsa.plot_acf(resid.values.squeeze(), lags=12, ax=ax1)ax2 = fig.add_subplot(212)fig = sm.graphics.tsa.plot_pacf(resid, lags=12, ax=ax2)#如果两图都零阶截尾,这说明模型拟合良好
8. Prediction
#预测至2016年的数据。由于ARIMA模型有两个参数,至少需要包含两个初始数据,因此从2006年开始预测predict = model.predict('2006', '2016', dynamic=True)print(predict)#画预测图及置信区间图fig, ax = plt.subplots(figsize=(10,8))fig = plot_predict(model, start='2002', end='2006', ax=ax)legend = ax.legend(loc='upper left')
For a large number of free learning recommendations, please visitpython tutorial(Video)
The above is the detailed content of Introducing the use of python's statsmodels module to fit ARIMA models. For more information, please follow other related articles on the PHP Chinese website!

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 Linux new version
SublimeText3 Linux latest version

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.