Home >Backend Development >Python Tutorial >Analyzing Python garbage collection mechanism
The reference counter is the main one, code recycling and mark clearing are the secondary ones
1.1 Big Butler refchainIn the C source code of Python, there is a circular two-way linked list called refchain. This linked list is quite awesome, because once an object is created in the Python program, the object will be added to the refchain linked list. middle. In other words, he saves all objects. 1.2 Reference Counterage = 18number = age # 对象18的引用计数器 + 1del age # 对象18的引用计数器 - 1def run(arg): print(arg) run(number) # 刚开始执行函数时,对象18引用计数器 + 1,当函数执行完毕之后,对象18引用计数器 - 1 。num_list = [11,22,number] # 对象18的引用计数器 + 1复制代码1.3 Mark clearing & generational recyclingGarbage collection based on reference counters is very convenient and simple, but it still has the problem of circular references, which prevents some data from being recycled normally. , for example:
v1 = [11,22,33] # refchain中创建一个列表对象,由于v1=对象,所以列表引对象用计数器为1.v2 = [44,55,66] # refchain中再创建一个列表对象,因v2=对象,所以列表对象引用计数器为1.v1.append(v2) # 把v2追加到v1中,则v2对应的[44,55,66]对象的引用计数器加1,最终为2.v2.append(v1) # 把v1追加到v1中,则v1对应的[11,22,33]对象的引用计数器加1,最终为2.del v1 # 引用计数器-1del v2 # 引用计数器-1复制代码
Mark Clear: Create a special linked list specifically for saving lists, tuples, dictionaries, collections, custom classes and other objects, and then check whether the objects in this linked list are There is a circular reference. If it exists, let the reference counters of both parties be -1.
Generational Recycling: Optimize the linked list in mark clearing and split those objects that may have circular references into three linked lists. The linked list is called: 0/1/2 three generations , each generation can store objects and thresholds. When the threshold is reached, each object in the corresponding linked list will be scanned, except for circular references, each will be decremented by 1 and objects with a reference counter of 0 will be destroyed.
// 分代的C源码#define NUM_GENERATIONS 3struct gc_generation generations[NUM_GENERATIONS] = { /* PyGC_Head, threshold, count */ {{(uintptr_t)_GEN_HEAD(0), (uintptr_t)_GEN_HEAD(0)}, 700, 0}, // 0代 {{(uintptr_t)_GEN_HEAD(1), (uintptr_t)_GEN_HEAD(1)}, 10, 0}, // 1代 {{(uintptr_t)_GEN_HEAD(2), (uintptr_t)_GEN_HEAD(2)}, 10, 0}, // 2代};复制代码Special note: The threshold and count of generation 0 and generation 1 and 2 have different meanings. 0 generation, count represents the number of objects in the generation 0 linked list, threshold represents the threshold of the number of objects in the generation 0 linked list, if it exceeds, a generation 0 scan check will be performed. Generation 1, count represents the number of generation 0 linked list scans, and threshold represents the threshold of the number of generation 0 linked list scans. If it exceeds the threshold, a generation 1 scan check will be performed. Generation 2, count represents the number of scans of the 1st generation linked list, and threshold represents the threshold of the number of scans of the 1st generation linked list. If it exceeds the threshold, a 2nd generation scan check will be performed. 1.4 Scenario SimulationThe detailed process of memory management and garbage collection will be explained based on the bottom layer of C language and combined with the diagram. Step one: When creating an object age=19, the object will be added to the refchain list. Second step: When the object num_list = [11,22] is created, the list object will be added to the refchain and generations 0. Step 3: When newly created objects cause the number of objects on the generation 0 linked list of generations to be greater than the threshold of 700, the objects on the linked list must be scanned and checked. When generation 0 is greater than the threshold, the bottom layer does not directly scan generation 0, but first determines whether 2 and 1 also exceed the threshold.
至此,垃圾回收的过程结束。
从上文大家可以了解到当对象的引用计数器为0时,就会被销毁并释放内存。而实际上他不是这么的简单粗暴,因为反复的创建和销毁会使程序的执行效率变低。Python中引入了“缓存机制”机制。
例如:引用计数器为0时,不会真正销毁对象,而是将他放到一个名为 free_list 的链表中,之后会再创建对象时不会在重新开辟内存,而是在free_list中将之前的对象来并重置内部的值来使用。
v1 = 3.14 # 开辟内存来存储float对象,并将对象添加到refchain链表。 print( id(v1) ) # 内存地址:4436033488 del v1 # 引用计数器-1,如果为0则在rechain链表中移除,不销毁对象,而是将对象添加到float的free_list. v2 = 9.999 # 优先去free_list中获取对象,并重置为9.999,如果free_list为空才重新开辟内存。 print( id(v2) ) # 内存地址:4436033488 # 注意:引用计数器为0时,会先判断free_list中缓存个数是否满了,未满则将对象缓存,已满则直接将对象销毁。复制代码
v1 = 38 # 去小数据池small_ints中获取38整数对象,将对象添加到refchain并让引用计数器+1。 print( id(v1)) #内存地址:4514343712 v2 = 38 # 去小数据池small_ints中获取38整数对象,将refchain中的对象的引用计数器+1。 print( id(v2) ) #内存地址:4514343712 # 注意:在解释器启动时候-5~256就已经被加入到small_ints链表中且引用计数器初始化为1, # 代码中使用的值时直接去small_ints中拿来用并将引用计数器+1即可。另外,small_ints中的数据引用计数器永远不会为0 # (初始化时就设置为1了),所以也不会被销毁。复制代码
v1 = "A" print( id(v1) ) # 输出:4517720496 del v1 v2 = "A" print( id(v1) ) # 输出:4517720496 # 除此之外,Python内部还对字符串做了驻留机制,针对只含有字母、数字、下划线的字符串(见源码Objects/codeobject.c),如果 # 内存中已存在则不会重新在创建而是使用原来的地址里(不会像free_list那样一直在内存存活,只有内存中有才能被重复利用)。 v1 = "asdfg" v2 = "asdfg" print(id(v1) == id(v2)) # 输出:True复制代码
list类型,维护的free_list数组最多可缓存80个list对象。
v1 = [11,22,33] print( id(v1) ) # 输出:4517628816del v1 v2 = ["你","好"] print( id(v2) ) # 输出:4517628816复制代码
v1 = (1,2) print( id(v1) )del v1 # 因元组的数量为2,所以会把这个对象缓存到free_list[2]的链表中。v2 = ("哈哈哈","Alex") # 不会重新开辟内存,而是去free_list[2]对应的链表中拿到一个对象来使用。print( id(v2) )复制代码
v1 = {"k1":123} print( id(v1) ) # 输出:4515998128 del v1 v2 = {"name":"哈哈哈","age":18,"gender":"男"} print( id(v1) ) # 输出:4515998128复制代码
C语言源码底层分析
相关免费学习推荐:python教程(视频)
The above is the detailed content of Analyzing Python garbage collection mechanism. For more information, please follow other related articles on the PHP Chinese website!