The following column golang tutorial will introduce you to golang’s make. I hope it will be helpful to friends in need!
Golang allocates memory mainly through the built-in functions new and make. Today we will explore how make can be played.
map can only allocate memory for slice, map, and channel, and return an initialized value. First, let’s take a look at the following three different uses of make:
1. make(map[string]string)
2. make([]int, 2)
3. make([]int, 2, 4)
1. The first usage is that the parameter is missing the length and only the type is passed. This usage can only be used in scenarios where the type is map or chan. , for example, make([]int) will report an error. The space length returned in this way defaults to 0.
2. The second usage specifies the length. For example, make([]int, 2) returns a slice with a length of 2
3. The third usage, the second The parameter specifies the length of the slice. The third parameter is used to specify the length of reserved space. For example, a := make([]int, 2, 4). It is worth noting here that the total length of the returned slice a is 4. Reserved does not mean the extra length of 4, but actually includes the number of the first two slices. So for example, when you use a := make([]int, 4, 2), a syntax error will be reported.
Therefore, when we allocate memory for a slice, we should try our best to estimate the possible maximum length of the slice, and reserve memory space for the slice by passing the third parameter to make, so as to avoid The overhead caused by secondary allocation of memory greatly improves the performance of the program.
In fact, it is difficult for us to estimate the possible maximum length of the slice. In this case, when we call append to append elements to the slice, golang in order to reduce the secondary allocation of memory as much as possible , not only increasing one unit of memory space each time, but also following such an expansion mechanism:
When there is reserved unused space, the unused space is directly added to the slice. When all the reserved space is used up, the expanded space will be twice the length of the current slice. For example, the length of the current slice is 4. After an append operation, the length returned by cap(a) will be 8. Take a look at the following demo code:
package main import ( "fmt") func main() { a := make([]int, 0) n := 20 for i := 0; i < n; i++ { a = append(a, 1) fmt.Printf("len=%d cap=%d\n", len(a), cap(a)) } } Output: len=1 cap=1 // 第一次扩容len=2 cap=2 // 第二次扩容len=3 cap=4 // 第三次扩容len=4 cap=4len=5 cap=8 // 第四次扩容len=6 cap=8len=7 cap=8len=8 cap=8len=9 cap=16 // 第五次扩容len=10 cap=16len=11 cap=16len=12 cap=16len=13 cap=16len=14 cap=16len=15 cap=16len=16 cap=16len=17 cap=32 // 第六次扩容len=18 cap=32len=19 cap=32len=20 cap=32
The above test results show that after each expansion, the memory space length will double its original size.
I am curious and want to try it. If it continues to expand like this, it will theoretically expand exponentially. However, will this really be the case? I continue to perform the append operation, and the subsequent output is like this:
0 0 1 1 2 2 4 4 8 8 16 16 32 32 64 64 128 128 256 256 512 512 1024 1024 1312 1312 // 288 1696 1696 // 384 2208 2208 // 512 3072 3072 // 864 4096 4096 // 1024 5120 5120 // 1024 7168 7168 // 2048 9216 9216 // 2048
The above output ignores the situation where there is no expansion in the middle. It can be seen that the first 11 expansions did double the length each time, but the 12th expansion obviously did not expand to 2048 as expected.
The above is the detailed content of About golang make. For more information, please follow other related articles on the PHP Chinese website!

Golangisidealforperformance-criticalapplicationsandconcurrentprogramming,whilePythonexcelsindatascience,rapidprototyping,andversatility.1)Forhigh-performanceneeds,chooseGolangduetoitsefficiencyandconcurrencyfeatures.2)Fordata-drivenprojects,Pythonisp

Golang achieves efficient concurrency through goroutine and channel: 1.goroutine is a lightweight thread, started with the go keyword; 2.channel is used for secure communication between goroutines to avoid race conditions; 3. The usage example shows basic and advanced usage; 4. Common errors include deadlocks and data competition, which can be detected by gorun-race; 5. Performance optimization suggests reducing the use of channel, reasonably setting the number of goroutines, and using sync.Pool to manage memory.

Golang is more suitable for system programming and high concurrency applications, while Python is more suitable for data science and rapid development. 1) Golang is developed by Google, statically typing, emphasizing simplicity and efficiency, and is suitable for high concurrency scenarios. 2) Python is created by Guidovan Rossum, dynamically typed, concise syntax, wide application, suitable for beginners and data processing.

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Go language has unique advantages in concurrent programming, performance, learning curve, etc.: 1. Concurrent programming is realized through goroutine and channel, which is lightweight and efficient. 2. The compilation speed is fast and the operation performance is close to that of C language. 3. The grammar is concise, the learning curve is smooth, and the ecosystem is rich.

The main differences between Golang and Python are concurrency models, type systems, performance and execution speed. 1. Golang uses the CSP model, which is suitable for high concurrent tasks; Python relies on multi-threading and GIL, which is suitable for I/O-intensive tasks. 2. Golang is a static type, and Python is a dynamic type. 3. Golang compiled language execution speed is fast, and Python interpreted language development is fast.

Golang is usually slower than C, but Golang has more advantages in concurrent programming and development efficiency: 1) Golang's garbage collection and concurrency model makes it perform well in high concurrency scenarios; 2) C obtains higher performance through manual memory management and hardware optimization, but has higher development complexity.

Golang is widely used in cloud computing and DevOps, and its advantages lie in simplicity, efficiency and concurrent programming capabilities. 1) In cloud computing, Golang efficiently handles concurrent requests through goroutine and channel mechanisms. 2) In DevOps, Golang's fast compilation and cross-platform features make it the first choice for automation tools.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

WebStorm Mac version
Useful JavaScript development tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.