Home >Backend Development >Python Tutorial >Let's talk about Python decorators
【Related learning recommendations: python tutorial】
# 不带参数的装饰器def deco_test(func): def wrapper(*args, **kwargs): print("before function") f = func(*args, **kwargs) print("after function") return f return wrapperdef do_something(a,b,c): print(a) time.sleep(1) print(b) time.sleep(1) print(c) return aif __name__ == '__main__': # 不用@ f = deco_test(do_something)("1","2","3")
Output:
before function 1 2 3 after function
Personal understanding:
is equivalent to putting two outputs outside the do_something
function: before function
and after function
.
# 不带参数的装饰器def deco_test(func): def wrapper(*args, **kwargs): print("before function") f = func(*args, **kwargs) print("after function") return f return wrapper @deco_testdef do_something(a,b,c): print(a) time.sleep(1) print(b) time.sleep(1) print(c) return aif __name__ == '__main__': # 使用@ f = do_something("1","2","3")
to output:
before function 1 2 3 after function
Personal understanding:
Equivalent to when executing the do_something
function, because of @
reasons, we already know that there is a layer of decorator deco_test
, so there is no need to write it separately deco_test(do_something)
is gone.
# 带参数的装饰器def logging(level): def wrapper(func): def inner_wrapper(*args, **kwargs): print("[{level}]: enter function {func}()".format(level=level, func=func.__name__)) f = func(*args, **kwargs) print("after function: [{level}]: enter function {func}()".format(level=level, func=func.__name__)) return f return inner_wrapper return wrapper @logging(level="debug")def do_something(a,b,c): print(a) time.sleep(1) print(b) time.sleep(1) print(c) return aif __name__ == '__main__': # 使用@ f = do_something("1","2","3")
Output:
[debug]: enter function do_something() 1 2 3 after function: [debug]: enter function do_something()
Personal understanding:
Decorator With a parameter level = "debug"
.
The outermost function logging()
accepts parameters and applies them to the inner decorator function. The inner function wrapper()
accepts a function as a parameter, and then places a decorator on the function. The key point here is that the decorator can use the parameters passed to logging()
.
# 类装饰器class deco_cls(object): def __init__(self, func): self._func = func def __call__(self, *args, **kwargs): print("class decorator before function") f = self._func(*args, **kwargs) print("class decorator after function") return f @deco_clsdef do_something(a,b,c): print(a) time.sleep(1) print(b) time.sleep(1) print(c) return aif __name__ == '__main__': # 使用@ f = do_something("1","2","3")
Output:
class decorator before function 1 2 3 class decorator after function
Personal understanding:
Use a decorator To wrap a function, return a callable instance. Therefore a class decorator is defined.
# 不带参数的装饰器def deco_test(func): def wrapper(*args, **kwargs): print("before function") f = func(*args, **kwargs) print("after function") return f return wrapper# 带参数的装饰器def logging(level): def wrapper(func): def inner_wrapper(*args, **kwargs): print("[{level}]: enter function {func}()".format(level=level, func=func.__name__)) f = func(*args, **kwargs) print("after function: [{level}]: enter function {func}()".format(level=level, func=func.__name__)) return f return inner_wrapper return wrapper @logging(level="debug")@deco_testdef do_something(a,b,c): print(a) time.sleep(1) print(b) time.sleep(1) print(c) return aif __name__ == '__main__': # 使用@ f = do_something("1","2","3")
Output:
[debug]: enter function wrapper() before function 1 2 3 after function after function: [debug]: enter function wrapper()
Personal understanding:
In functiondo_something()
First put a layer of deco_test()
decorator on the outside, and then put a layer of logging()
decorator on the outside.
If you want to know more about programming learning, please pay attention to the php training column!
The above is the detailed content of Let's talk about Python decorators. For more information, please follow other related articles on the PHP Chinese website!