


Detailed explanation of the method of crawling 51cto data in Python and storing it in MySQL
[Related learning recommendations: python tutorial】
Experimental environment
1. Install Python 3.7
2. Install requests, bs4, pymysql module
Experimental steps 1. Installation environment and module
Please refer to https://www. jb51.net/article/194104.htm
2.Write code
# 51cto 博客页面数据插入mysql数据库 # 导入模块 import re import bs4 import pymysql import requests # 连接数据库账号密码 db = pymysql.connect(host='172.171.13.229', user='root', passwd='abc123', db='test', port=3306, charset='utf8') # 获取游标 cursor = db.cursor() def open_url(url): # 连接模拟网页访问 headers = { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/57.0.2987.98 Safari/537.36'} res = requests.get(url, headers=headers) return res # 爬取网页内容 def find_text(res): soup = bs4.BeautifulSoup(res.text, 'html.parser') # 博客名 titles = [] targets = soup.find_all("a", class_="tit") for each in targets: each = each.text.strip() if "置顶" in each: each = each.split(' ')[0] titles.append(each) # 阅读量 reads = [] read1 = soup.find_all("p", class_="read fl on") read2 = soup.find_all("p", class_="read fl") for each in read1: reads.append(each.text) for each in read2: reads.append(each.text) # 评论数 comment = [] targets = soup.find_all("p", class_='comment fl') for each in targets: comment.append(each.text) # 收藏 collects = [] targets = soup.find_all("p", class_='collect fl') for each in targets: collects.append(each.text) # 发布时间 dates=[] targets = soup.find_all("a", class_='time fl') for each in targets: each = each.text.split(':')[1] dates.append(each) # 插入sql 语句 sql = """insert into blog (blog_title,read_number,comment_number, collect, dates) values( '%s', '%s', '%s', '%s', '%s');""" # 替换页面 \xa0 for titles, reads, comment, collects, dates in zip(titles, reads, comment, collects, dates): reads = re.sub('\s', '', reads) comment = re.sub('\s', '', comment) collects = re.sub('\s', '', collects) cursor.execute(sql % (titles, reads, comment, collects,dates)) db.commit() pass # 统计总页数 def find_depth(res): soup = bs4.BeautifulSoup(res.text, 'html.parser') depth = soup.find('li', class_='next').previous_sibling.previous_sibling.text return int(depth) # 主函数 def main(): host = "https://blog.51cto.com/13760351" res = open_url(host) # 打开首页链接 depth = find_depth(res) # 获取总页数 # 爬取其他页面信息 for i in range(1, depth + 1): url = host + '/p' + str(i) # 完整链接 res = open_url(url) # 打开其他链接 find_text(res) # 爬取数据 # 关闭游标 cursor.close() # 关闭数据库连接 db.close() if __name__ == '__main__': main()
3..MySQL creates the corresponding table
CREATE TABLE `blog` ( `row_id` int(11) NOT NULL AUTO_INCREMENT COMMENT '主键', `blog_title` varchar(52) DEFAULT NULL COMMENT '博客标题', `read_number` varchar(26) DEFAULT NULL COMMENT '阅读数量', `comment_number` varchar(16) DEFAULT NULL COMMENT '评论数量', `collect` varchar(16) DEFAULT NULL COMMENT '收藏数量', `dates` varchar(16) DEFAULT NULL COMMENT '发布日期', PRIMARY KEY (`row_id`) ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
import re import bs4 import pymysql import requests # 连接数据库 db = pymysql.connect(host='172.171.13.229', user='root', passwd='abc123', db='test', port=3306, charset='utf8') # 获取游标 cursor = db.cursor() def open_url(url): # 连接模拟网页访问 headers = { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/57.0.2987.98 Safari/537.36'} res = requests.get(url, headers=headers) return res # 爬取网页内容 def find_text(res): soup = bs4.BeautifulSoup(res.text, 'html.parser') # 博客标题 titles = [] targets = soup.find_all("a", class_="tit") for each in targets: each = each.text.strip() if "置顶" in each: each = each.split(' ')[0] titles.append(each) # 阅读量 reads = [] read1 = soup.find_all("p", class_="read fl on") read2 = soup.find_all("p", class_="read fl") for each in read1: reads.append(each.text) for each in read2: reads.append(each.text) # 评论数 comment = [] targets = soup.find_all("p", class_='comment fl') for each in targets: comment.append(each.text) # 收藏 collects = [] targets = soup.find_all("p", class_='collect fl') for each in targets: collects.append(each.text) # 发布时间 dates=[] targets = soup.find_all("a", class_='time fl') for each in targets: each = each.text.split(':')[1] dates.append(each) # 插入sql 语句 sql = """insert into blogs (blog_title,read_number,comment_number, collect, dates) values( '%s', '%s', '%s', '%s', '%s');""" # 替换页面 \xa0 for titles, reads, comment, collects, dates in zip(titles, reads, comment, collects, dates): reads = re.sub('\s', '', reads) reads=int(re.sub('\D', "", reads)) #匹配数字,转换为整型 comment = re.sub('\s', '', comment) comment = int(re.sub('\D', "", comment)) #匹配数字,转换为整型 collects = re.sub('\s', '', collects) collects = int(re.sub('\D', "", collects)) #匹配数字,转换为整型 dates = re.sub('\s', '', dates) cursor.execute(sql % (titles, reads, comment, collects,dates)) db.commit() pass # 统计总页数 def find_depth(res): soup = bs4.BeautifulSoup(res.text, 'html.parser') depth = soup.find('li', class_='next').previous_sibling.previous_sibling.text return int(depth) # 主函数 def main(): host = "https://blog.51cto.com/13760351" res = open_url(host) # 打开首页链接 depth = find_depth(res) # 获取总页数 # 爬取其他页面信息 for i in range(1, depth + 1): url = host + '/p' + str(i) # 完整链接 res = open_url(url) # 打开其他链接 find_text(res) # 爬取数据 # 关闭游标 cursor.close() # 关闭数据库连接 db.close() #主程序入口 if __name__ == '__main__': main()2. Create the corresponding table
CREATE TABLE `blogs` ( `row_id` int(11) NOT NULL AUTO_INCREMENT COMMENT '主键', `blog_title` varchar(52) DEFAULT NULL COMMENT '博客标题', `read_number` int(26) DEFAULT NULL COMMENT '阅读数量', `comment_number` int(16) DEFAULT NULL COMMENT '评论数量', `collect` int(16) DEFAULT NULL COMMENT '收藏数量', `dates` varchar(16) DEFAULT NULL COMMENT '发布日期', PRIMARY KEY (`row_id`) ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;3. Run the code and verifyUpgraded versionIn order It allows novices to use this program, and can package this project into an exe format file, so that others can run the code using a computer, which is very convenient! 1. Improve the code:
#末尾修改为: if __name__ == '__main__': main() print("\n\t\t所有数据已成功存放数据库!!! \n") time.sleep(5)2. Install the packaging module pyinstaller (cmd installation)
pip install pyinstaller -i https://pypi.tuna. tsinghua.edu.cn/simple/
Related learning recommendations:
The above is the detailed content of Detailed explanation of the method of crawling 51cto data in Python and storing it in MySQL. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 Chinese version
Chinese version, very easy to use

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Atom editor mac version download
The most popular open source editor
