In the past two days, I have been doing algorithm questions related to binary trees and taking some study notes. (You don’t even know how to do binary trees? You are really not proficient, and you don’t have to write algorithms or data structures related to binary trees in your daily work. Because I am good at it, I have to study harder!)
Definition
Let’s first look at Wikipedia’s explanation: In computer science, Binary tree (English: Binary tree) is a node with at most two branches ( That is, there is no tree structure with a node with a branch degree greater than 2). Usually branches are called "left subtree" or "right subtree". The branches of a binary tree have left and right order and cannot be reversed at will.
Due to the characteristics defined by the binary tree itself, it has a high degree of local repeatability, so when traversing the binary tree depth-first, it is usually implemented in a recursive way. The code implemented in this way is very concise and beautiful, and it is easier to understand. .
Depth-first traversal
Generally, we have three most common order traversals for depth-first traversal of binary trees: pre-order, mid-order, and post-order.
The traversal order of the preorder is: visit the root node-> traverse the left subtree-> traverse the right subtree
The traversal order of the mid-order is: traverse the left subtree-> ; Access the root node-> Traverse the right subtree
The post-order traversal order is: Traverse the left subtree-> Traverse the right subtree-> Visit the root node
Note The left and right here are the entire subtree, not a node, because we need to traverse the entire tree, so each traversal is performed in this order until the leaf node.
For example, if there is the following binary tree:
The sequence obtained by preorder traversal is A - B - C - D - E
The sequence obtained by mid-order traversal is B - A - D - C - E
The sequence obtained by post-order traversal is B - D - E - C - A
We will use pre-order traversal. (It is strongly not recommended to use human recursion, at least my brain can’t handle three levels...):
First level of recursion:
Visit the root node first, so the root node is output A, then traverse the left subtree (L1), and then traverse the right subtree (R1);
Second level recursion:
For L1, the root node is visited first, so the output is at this time The root node B, and then find that the left and right subtrees of B are empty, end the recursion;
For R1, visit the root node first, so output the root node C at this time, and then traverse the left subtree ( L2), and then traverse the right subtree (R2);
The third level of recursion:
For L2, the root node is visited first, so the root node D at this time is output, and then found The left and right subtrees of D are empty, and the recursion ends;
For R2, the root node is visited first, so the root node E at this time is output, and then the left and right subtrees of E are found to be empty, and the recursion ends;
Characteristics of front, middle and back order
According to the definition of front, middle and back order, it is not difficult for us to find the following characteristics:
• The first one in the pre-order must be the root node, and the last one in the post-order must be the root node
• The distribution of the left subtree and right subtree of each sort is regular
• For each subtree, a tree that follows the above two rules
#These characteristics are the expression of the order in the definition.
Various derivation
Here are some of the most basic algorithm questions for binary tree traversal:
• Given a binary tree, get the sequence of its pre/middle/post-order traversal;
• Derivation of the post-order (or derivation of the entire binary tree) based on the pre-order and mid-order;
• Based on the post-order and in-order to deduce pre-order (or deduce the entire binary tree);
For binary tree traversal, as mentioned before, recursion is usually used. For recursion, there are templates that can be applied directly:
public void recur(int level, int param) { // terminator if (level > MAX_LEVEL) { // process result return; } // process current logic process(level, param); // drill down recur(level+1, newParam); // restore current status }
This is a more practical tip mentioned by Brother Chao (Qin Chao) in the algorithm training camp I watched in the past two days (this template is especially good for novices). Follow the three steps above (if there are local variables needed Release or additional processing will be done in step 4) You can write recursive code in a more orderly manner.
Here is an example of deriving post-order based on pre-order and mid-order:
First initialize the two sequences:
int[] preSequence = {1, 2, 3, 4, 5, 6, 7, 8, 9}; int[] inSequence = {2, 3, 1, 6, 7, 8, 5, 9, 4};
Through the several features mentioned above, we have The minimum repeated sub-problem can be found. Each recursion
matches the index i where the node value is located in the mid-order according to the first node value of the previous sequence, so that we We can get the front and back parts of index i corresponding to the left and right subtrees respectively, and then traverse the two left and right subtrees respectively, and then output the first node value of the current preorder, which is the root node.
According to the top-down programming method, we can first write the following initial recursive call:
List<Integer> result = new ArrayList<>(); preAndInToPost(0, 0, preSequence.length, preSequence, inSequence, result);
The first parameter represents the first element index of the preorder sequence;
The second parameter represents the first element index of the in-order sequence;
The third parameter represents the length of the sequence;
第四个参数表示前序序列;
第五个参数表示后序序列;
第六个参数用于保存结果;
先来考虑终止条件是什么,也就是什么时候结束递归,当我们的根结点为空的时候终止,对应这里就是序列长度为零的时候。
if (length == 0) { return; }
接着考虑处理逻辑,也就是找到索引 i:
int i = 0; while (inSequence[inIndex + i] != preSequence[preIndex]) { i++; }
然后开始向下递归:
preAndInToPost(preIndex + 1, inIndex, i, preSequence, inSequence, result); preAndInToPost(preIndex + i + 1, inIndex + i + 1, length - i - 1, preSequence, inSequence, result); result.add(preSequence[preIndex]);
因为推导的是后序序列,所以顺序如上,添加根结点的操作是在最后的。前三个参数如何得出来的呢,我们走一下第一次遍历就可以得出来。
前序序列的第一个结点 1 在中序序列中的索引为 2,此时
左子树的中序系列起始索引为总序列的第 1 个索引,长度为 2;
左子树的前序序列起始索引为总序列的第 2 个索引,长度为 2;
右子树的中序系列起始索引为总序列的第 3 个索引,长度为 length - 3;
右子树的前序序列起始索引为总序列的第 3 个索引,长度为 length - 3;
完整代码如下:
/** * 根据前序和中序推导后序 * * @param preIndex 前序索引 * @param inIndex 中序索引 * @param length 序列长度 * @param preSequence 前序序列 * @param inSequence 中序序列 * @param result 结果序列 */ private void preAndInToPost(int preIndex, int inIndex, int length, int[] preSequence, int[] inSequence, List<Integer> result) { if (length == 0) { return; } int i = 0; while (inSequence[inIndex + i] != preSequence[preIndex]) { i++; } preAndInToPost(preIndex + 1, inIndex, i, preSequence, inSequence, result); preAndInToPost(preIndex + i + 1, inIndex + i + 1, length - i - 1, preSequence, inSequence, result); result.add(preSequence[preIndex]); }
参考链接
• 维基百科 - 二叉树(https://zh.wikipedia.org/wiki/%E4%BA%8C%E5%8F%89%E6%A0%91)
推荐教程:《java教程》
The above is the detailed content of Detailed explanation of depth-first traversal of binary trees in Java. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于结构化数据处理开源库SPL的相关问题,下面就一起来看一下java下理想的结构化数据处理类库,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于PriorityQueue优先级队列的相关知识,Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于java锁的相关问题,包括了独占锁、悲观锁、乐观锁、共享锁等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于多线程的相关问题,包括了线程安装、线程加锁与线程不安全的原因、线程安全的标准类等等内容,希望对大家有帮助。

本篇文章给大家带来了关于Java的相关知识,其中主要介绍了关于关键字中this和super的相关问题,以及他们的一些区别,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于枚举的相关问题,包括了枚举的基本操作、集合类对枚举的支持等等内容,下面一起来看一下,希望对大家有帮助。

封装是一种信息隐藏技术,是指一种将抽象性函式接口的实现细节部分包装、隐藏起来的方法;封装可以被认为是一个保护屏障,防止指定类的代码和数据被外部类定义的代码随机访问。封装可以通过关键字private,protected和public实现。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于设计模式的相关问题,主要将装饰器模式的相关内容,指在不改变现有对象结构的情况下,动态地给该对象增加一些职责的模式,希望对大家有帮助。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Atom editor mac version download
The most popular open source editor

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
