Recommended tutorial: "python video tutorial"
What are the examples of python custom functions?
Examples of python custom functions include:
1. What is a function?
A function is an organized, reusable code segment used to implement a single or related function. Functions can improve application modularity and code reuse.
2. Function definition method:
def test(x): '函数定义方法' x+=1 return x
Explanation:
def
: Define function keywords
test
: Function name
()
: Definable formal parameters
''
: Document description
x =1
: Code block or program processing logic
return
:End and return value
Why should a function have a return value? ?
Receive the execution result of the function through the return value, and subsequent logic needs to use this result to perform its corresponding operation.
(1), Example: Write log information to a file
import time # 定义函数 def test1(): '函数练习:添加日志记录' log_time = time.strftime('%Y-%m-%d %X') with open('file_a','a') as f: f.write(log_time+':log msg\n') # 调用函数 test1()
(2), Function return value description:
return Number of return values = 0: Return one None value (none)
Return value = 1: Object (Object)
rebate Value & GT; :
#函数返回类型 def test_None(): print('返回一个空值') x=test_None() print(x) def test_object(): print('返回一个对象') return 0 y=test_object() print(y) def test_tuples(): print('返回一个元组') return 1,'hello world',['qwe','asd'],{'001':'simple'} z=test_tuples() print(z)
(3), formal parameters: the defined parameters are called formal parameters (x, y)
Actual parameters: the actual parameters passed in are called actual parameters (1,2)
Without specifying parameters: one-to-one correspondence between actual and formal parameter positions
Example:
Note: When positional parameters are shared and keyword parameters are shared, keyword parameters cannot be written. Before positional parameters
def test_sum(x,y): '两数之和' z = x + y return z t_sum=test_sum(1,2) #实参与形参位置一一对应 print(t_sum) t_sum2=test_sum(x=1,y=2) #与形参位置无关 print(t_sum2) t_sum3=test_sum(1,y=2) # 错误方式:test_sum(x=1,2) 位置传参与关键字传参共用时,关键参数不能写在位置参数之前 print(t_sum3)
(4), default value parameter:
# 默认值参数 def test_default(x,y=2): '默认值参数' z = x + y return z print(test_default(2)) #print(tesst_default(2,2))
(5), parameter group (indefinite length parameter):
# 参数组,接受位置参数,将多个实参存入一个元组中 # 定义格式:*变量名(一般规范为 *args) def test_group(*args): '参数组' print(args) test_group(1,2,3,4,5,6) def test_group2(x,*args): '参数组与位置参数混用' print(x) print(args) test_group2(1,2,3,4,5,6) # 接受关键字参数组,转换成字典 def test_group3(**kwargs): '参数组键值对形式' print(kwargs['name']) test_group3(name='simple',age=25,sex='m') def test_group4(name,**kwargs): '参数、参数组键值对混用' print(name) print(kwargs) test_group4('simple',age=25,sex='m') #注:参数组必须放在位置参数、默认参数之后 def test_group5(name,age=25,**kwargs): '参数、默认参数、参数组键值对混用' print(name) print(age) print(kwargs) test_group5('simple',age=3,sex='m',game='lol') def test_group6(name,age=25,*args,**kwargs): '参数、默认参数、参数组、参数组键值对混用' print(name) print(age) print(*args) print(kwargs) test_group5('simple',age=3,sex='m',game='lol')
Recommended related articles: "
python tutorialThe above is the detailed content of What are the examples of python custom functions?. For more information, please follow other related articles on the PHP Chinese website!

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

NumPyallowsforvariousoperationsonarrays:1)Basicarithmeticlikeaddition,subtraction,multiplication,anddivision;2)Advancedoperationssuchasmatrixmultiplication;3)Element-wiseoperationswithoutexplicitloops;4)Arrayindexingandslicingfordatamanipulation;5)Ag

ArraysinPython,particularlythroughNumPyandPandas,areessentialfordataanalysis,offeringspeedandefficiency.1)NumPyarraysenableefficienthandlingoflargedatasetsandcomplexoperationslikemovingaverages.2)PandasextendsNumPy'scapabilitieswithDataFramesforstruc


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

WebStorm Mac version
Useful JavaScript development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
