Docker supports GPU, and docker can use GPU through nvidia-docker2. Configure the runtime to use nvidia in the daemon.json file. After starting the container, run nvidia-smi to see all GPUs.
Introduction to the method of mounting GPU with docker:
Using nvidia-docker2
In short, using nvidia-docker2, you can use the GPU effortlessly, just You need to configure the runtime. After starting the container using nvidia
cat /etc/docker/daemon.json { "default-runtime": "nvidia", "runtimes": { "nvidia": { "path": "/usr/bin/nvidia-container-runtime", "runtimeArgs": [] } }, "exec-opts": ["native.cgroupdriver=systemd"] }
, you can see all GPU cards by running nvidia-smi:
[root@localhost] docker run -it 98b41a1e975d bash root@6db1dd28459d:/notebooks# nvidia-smi +-----------------------------------------------------------------------------+ | NVIDIA-SMI 410.79 Driver Version: 410.79 CUDA Version: 10.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla V100-SXM2... On | 00000000:8A:00.0 Off | 0 | | N/A 40C P0 57W / 300W | 4053MiB / 16130MiB | 4% Default | +-------------------------------+----------------------+----------------------+ | 1 Tesla V100-SXM2... On | 00000000:8B:00.0 Off | 0 | | N/A 38C P0 40W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 2 Tesla V100-SXM2... On | 00000000:8C:00.0 Off | 0 | | N/A 42C P0 46W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 3 Tesla V100-SXM2... On | 00000000:8D:00.0 Off | 0 | | N/A 39C P0 40W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 4 Tesla V100-SXM2... On | 00000000:B3:00.0 Off | 0 | | N/A 39C P0 42W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 5 Tesla V100-SXM2... On | 00000000:B4:00.0 Off | 0 | | N/A 41C P0 57W / 300W | 7279MiB / 16130MiB | 4% Default | +-------------------------------+----------------------+----------------------+ | 6 Tesla V100-SXM2... On | 00000000:B5:00.0 Off | 0 | | N/A 40C P0 45W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 7 Tesla V100-SXM2... On | 00000000:B6:00.0 Off | 0 | | N/A 41C P0 44W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| +-----------------------------------------------------------------------------+
You can add some libraries through NVIDIA_DRIVER_CAPABILITIES. Through NVIDIA_VISIBLE_DEVICES you can only use certain GPU cards
[root@localhost cuda-9.0]# docker run -it --env NVIDIA_DRIVER_CAPABILITIES="compute,utility" --env NVIDIA_VISIBLE_DEVICES=0,1 98b41a1e975d bash root@97bf127ff83a:/notebooks# nvidia-smi Tue Oct 15 09:29:45 2019 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 410.79 Driver Version: 410.79 CUDA Version: 10.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla V100-SXM2... On | 00000000:8A:00.0 Off | 0 | | N/A 39C P0 57W / 300W | 4053MiB / 16130MiB | 3% Default | +-------------------------------+----------------------+----------------------+ | 1 Tesla V100-SXM2... On | 00000000:8B:00.0 Off | 0 | | N/A 37C P0 40W / 300W | 0MiB / 16130MiB | 0% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| +-----------------------------------------------------------------------------+
For more related tutorials, please pay attention to the docker tutorial column on the PHP Chinese website.
The above is the detailed content of Does docker support gpu?. For more information, please follow other related articles on the PHP Chinese website!

Docker is important on Linux because Linux is its native platform that provides rich tools and community support. 1. Install Docker: Use sudoapt-getupdate and sudoapt-getinstalldocker-cedocker-ce-clicotainerd.io. 2. Create and manage containers: Use dockerrun commands, such as dockerrun-d--namemynginx-p80:80nginx. 3. Write Dockerfile: Optimize the image size and use multi-stage construction. 4. Optimization and debugging: Use dockerlogs and dockerex

Docker is a containerization tool, and Kubernetes is a container orchestration tool. 1. Docker packages applications and their dependencies into containers that can run in any Docker-enabled environment. 2. Kubernetes manages these containers, implementing automated deployment, scaling and management, and making applications run efficiently.

The purpose of Docker is to simplify application deployment and ensure that applications run consistently in different environments through containerization technology. 1) Docker solves the environmental differences problem by packaging applications and dependencies into containers. 2) Create images using Dockerfile to ensure that the application runs consistently anywhere. 3) Docker's working principle is based on images and containers, and uses the namespace and control groups of the Linux kernel to achieve isolation and resource management. 4) The basic usage includes pulling and running images from DockerHub, and the advanced usage involves managing multi-container applications using DockerCompose. 5) Common errors such as image building failure and container failure to start, you can debug through logs and network configuration. 6) Performance optimization construction

The methods of installing and using Docker on Ubuntu, CentOS, and Debian are different. 1) Ubuntu: Use the apt package manager, the command is sudoapt-getupdate&&sudoapt-getinstalldocker.io. 2) CentOS: Use the yum package manager and you need to add the Docker repository. The command is sudoyumininstall-yyum-utils&&sudoyum-config-manager--add-repohttps://download.docker.com/lin

Using Docker on Linux can improve development efficiency and simplify application deployment. 1) Pull Ubuntu image: dockerpullubuntu. 2) Run Ubuntu container: dockerrun-itubuntu/bin/bash. 3) Create Dockerfile containing nginx: FROMubuntu;RUNapt-getupdate&&apt-getinstall-ynginx;EXPOSE80. 4) Build the image: dockerbuild-tmy-nginx. 5) Run container: dockerrun-d-p8080:80

Docker simplifies application deployment and management on Linux. 1) Docker is a containerized platform that packages applications and their dependencies into lightweight and portable containers. 2) On Linux, Docker uses cgroups and namespaces to implement container isolation and resource management. 3) Basic usages include pulling images and running containers. Advanced usages such as DockerCompose can define multi-container applications. 4) Debug commonly used dockerlogs and dockerexec commands. 5) Performance optimization can reduce the image size through multi-stage construction, and keeping the Dockerfile simple is the best practice.

Docker is a Linux container technology-based tool used to package, distribute and run applications to improve application portability and scalability. 1) Dockerbuild and dockerrun commands can be used to build and run Docker containers. 2) DockerCompose is used to define and run multi-container Docker applications to simplify microservice management. 3) Using multi-stage construction can optimize the image size and improve the application startup speed. 4) Viewing container logs is an effective way to debug container problems.

Docker container startup steps: Pull the container image: Run "docker pull [mirror name]". Create a container: Use "docker create [options] [mirror name] [commands and parameters]". Start the container: Execute "docker start [Container name or ID]". Check container status: Verify that the container is running with "docker ps".


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software