Preface
Most developers know that indexing is faster. But in the actual process, we often encounter some questions & difficulties:
- The fields we query will have various cases. Do all fields involved in the query need to be indexed?
- How to choose between compound index and single field? Is it better to add both or a single field for each?
- Are there any side effects of adding index?
- The index has been added, but it’s still not fast enough? what to do?
This article attempts to explain the basic knowledge of indexing & answer the above questions.
1. What exactly is an index?
Most developers who come into contact with indexes probably know that indexes are similar to the catalog of books. You need to find the content you want, find the qualified keywords through the catalog, then find the pageno of the corresponding chapter, and then find the specific content. .
In the data structure, the simplest index implementation is similar to a hashmap, which maps to a specific location through the keyword key to find the specific content. But in addition to hashing, there are many ways to implement indexing.
(1) Multiple implementation methods and features of index
hash / b-tree / b -tree redis HSET / MongoDB&PostgreSQL / MySQL
hashmap
- b -tree leaves store data, non-leaves store indexes, no data is stored, and there are links between leaves
- b-tree non-leaves can store data
- hash is close to O(1)
- b-tree O(1)~ O(Log(n)) faster average search time , unstable query time
- b tree O(Log(n)) continuous data, query stability
There are many articles on the Internet that explain this, but it is not the focus of this article.
Index should be stored in memory as much as possible, followed by data. Be careful to keep only necessary indexes, and use memory as wisely as possible.
If the index memory is close to filling up the memory, it will be easy to read the disk and the speed will slow down.
Take the simplest hashmap as an example, why is the complexity not O(1), but so-called close to O(1). Because there are key conflicts/duplications, when the DB is looking for it, if there is a lot of data with key conflicts, it still has to take turns to continue looking. The same goes for b-tree looking at key selection.
So a mistake that most developers often make is to index keys that have no distinction. For example: many collections have only centralized categories of type/status documents with a count of hundreds of thousands or more. Usually this kind of index is not helpful.
A loans collection is created here. Simplified to only have 100 pieces of data. This is a loan table with _id, userId, status (loan status), amount (amount).
db.loans.count()100
db.loans.find({ "userId" : "59e022d33f239800129c61c7", "status" : "repayed", }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "$and" : [ { "status" : { "$eq" : "repayed" } }, { "userId" : { "$eq" : "59e022d33f239800129c61c7" } } ] }, "queryHash" : "15D5A9A1", "planCacheKey" : "15D5A9A1", "winningPlan" : { "stage" : "COLLSCAN", "filter" : { "$and" : [ { "status" : { "$eq" : "repayed" } }, { "userId" : { "$eq" : "59e022d33f239800129c61c7" } } ] }, "direction" : "forward" }, "rejectedPlans" : [ ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }Note The COLLSCAN above scans the entire table because there is no index. Next we create several indexes respectively.
step 1 First create {userId:1, status:1}
db.loans.createIndex({userId:1, status:1}) { "createdCollectionAutomatically" : false, "numIndexesBefore" : 1, "numIndexesAfter" : 2, "ok" : 1 }
db.loans.find({ "userId" : "59e022d33f239800129c61c7", "status" : "repayed", }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "$and" : [ { "status" : { "$eq" : "repayed" } }, { "userId" : { "$eq" : "59e022d33f239800129c61c7" } } ] }, "queryHash" : "15D5A9A1", "planCacheKey" : "BB87F2BA", "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ], "status" : [ "["repayed", "repayed"]" ] } } }, "rejectedPlans" : [ ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }Result: {userId:1, status:1} is hit as the winning plan.
step2: Create a typical index userId
db.loans.createIndex({userId:1}) { "createdCollectionAutomatically" : false, "numIndexesBefore" : 2, "numIndexesAfter" : 3, "ok" : 1 }
db.loans.find({ "userId" : "59e022d33f239800129c61c7", "status" : "repayed", }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "$and" : [ { "status" : { "$eq" : "repayed" } }, { "userId" : { "$eq" : "59e022d33f239800129c61c7" } } ] }, "queryHash" : "15D5A9A1", "planCacheKey" : "1B1A4861", "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "[\"59e022d33f239800129c61c7\", \"59e022d33f239800129c61c7\"]" ], "status" : [ "[\"repayed\", \"repayed\"]" ] } } }, "rejectedPlans" : [ { "stage" : "FETCH", "filter" : { "status" : { "$eq" : "repayed" } }, "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1 }, "indexName" : "userId_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ] } } } ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }Note that DB detects {userId:1, status:1} as a better execution plan.
db.loans.find({ "userId" : "59e022d33f239800129c61c7" }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "userId" : { "$eq" : "59e022d33f239800129c61c7" } }, "queryHash" : "B1777DBA", "planCacheKey" : "1F09D68E", "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1 }, "indexName" : "userId_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ] } } }, "rejectedPlans" : [ { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ], "status" : [ "[MinKey, MaxKey]" ] } } } ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }Notice that DB detects {userId:1} as a better execution plan, um~, as we expected.
db.loans.find({ "status" : "repayed" }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "status" : { "$eq" : "repayed" } }, "queryHash" : "E6304EB6", "planCacheKey" : "7A94191B", "winningPlan" : { "stage" : "COLLSCAN", "filter" : { "status" : { "$eq" : "repayed" } }, "direction" : "forward" }, "rejectedPlans" : [ ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }
Interesting part: status does not hit the index, Full table scanNext step, add a sort:
db.loans.find({ "userId" : "59e022d33f239800129c61c7" }).sort({status:1}).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "userId" : { "$eq" : "59e022d33f239800129c61c7" } }, "queryHash" : "F5ABB1AA", "planCacheKey" : "764CBAA8", "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ], "status" : [ "[MinKey, MaxKey]" ] } } }, "rejectedPlans" : [ { "stage" : "SORT", "sortPattern" : { "status" : 1 }, "inputStage" : { "stage" : "SORT_KEY_GENERATOR", "inputStage" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1 }, "indexName" : "userId_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ] } } } } } ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }(2) Other attempts
Interesting part: status does not hit the index
db.loans.find({ "status" : "repayed","userId" : "59e022d33f239800129c61c7", }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "$and" : [ { "status" : { "$eq" : "repayed" } }, { "userId" : { "$eq" : "59e022d33f239800129c61c7" } } ] }, "queryHash" : "15D5A9A1", "planCacheKey" : "1B1A4861", "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "[\"59e022d33f239800129c61c7\", \"59e022d33f239800129c61c7\"]" ], "status" : [ "[\"repayed\", \"repayed\"]" ] } } }, "rejectedPlans" : [ { "stage" : "FETCH", "filter" : { "status" : { "$eq" : "repayed" } }, "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1 }, "indexName" : "userId_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ] } } } ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }The hit index is not related to the order of each field of the query, as we guessed.
Come back to the interesting part, we delete the index {userId:1}
db.loans.dropIndex({"userId":1}) { "nIndexesWas" : 3, "ok" : 1 } db.loans.find({"userId" : "59e022d33f239800129c61c7", }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "userId" : { "$eq" : "59e022d33f239800129c61c7" } }, "queryHash" : "B1777DBA", "planCacheKey" : "5776AB9C", "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "["59e022d33f239800129c61c7", "59e022d33f239800129c61c7"]" ], "status" : [ "[MinKey, MaxKey]" ] } } }, "rejectedPlans" : [ ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }DB execution analyzer thinks that the index {userId:1, status:1} can be better, but there is no hit Composite index, this is because status is not the leading field.
db.loans.find({ "status" : "repayed" }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "status" : { "$eq" : "repayed" } }, "queryHash" : "E6304EB6", "planCacheKey" : "7A94191B", "winningPlan" : { "stage" : "COLLSCAN", "filter" : { "status" : { "$eq" : "repayed" } }, "direction" : "forward" }, "rejectedPlans" : [ ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }Change the sort angle again and interchange it with the previous query & sort. The previous one was:
db.loans.find({userId:1}).sort({ "status" : "repayed" })See what’s the difference?
db.loans.find({ "status" : "repayed" }).sort({userId:1}).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "status" : { "$eq" : "repayed" } }, "queryHash" : "56EA6313", "planCacheKey" : "2CFCDA7F", "winningPlan" : { "stage" : "FETCH", "filter" : { "status" : { "$eq" : "repayed" } }, "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "userId" : 1, "status" : 1 }, "indexName" : "userId_1_status_1", "isMultiKey" : false, "multiKeyPaths" : { "userId" : [ ], "status" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "userId" : [ "[MinKey, MaxKey]" ], "status" : [ "[MinKey, MaxKey]" ] } } }, "rejectedPlans" : [ ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }As guessed, hit the index.
Let’s play again and confirm the leading filed test:
db.loans.dropIndex("userId_1_status_1") { "nIndexesWas" : 2, "ok" : 1 }
db.loans.getIndexes() [ { "v" : 2, "key" : { "id" : 1 }, "name" : "id_", "ns" : "cashLoan.loans" } ]
db.loans.createIndex({status:1, userId:1}) { "createdCollectionAutomatically" : false, "numIndexesBefore" : 1, "numIndexesAfter" : 2, "ok" : 1 }
db.loans.getIndexes() [ { "v" : 2, "key" : { "id" : 1 }, "name" : "id_", "ns" : "cashLoan.loans" }, { "v" : 2, "key" : { "status" : 1, "userId" : 1 }, "name" : "status_1_userId_1", "ns" : "cashLoan.loans" } ]
db.loans.find({ "status" : "repayed" }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "status" : { "$eq" : "repayed" } }, "queryHash" : "E6304EB6", "planCacheKey" : "7A94191B", "winningPlan" : { "stage" : "FETCH", "inputStage" : { "stage" : "IXSCAN", "keyPattern" : { "status" : 1, "userId" : 1 }, "indexName" : "status_1_userId_1", "isMultiKey" : false, "multiKeyPaths" : { "status" : [ ], "userId" : [ ] }, "isUnique" : false, "isSparse" : false, "isPartial" : false, "indexVersion" : 2, "direction" : "forward", "indexBounds" : { "status" : [ "["repayed", "repayed"]" ], "userId" : [ "[MinKey, MaxKey]" ] } } }, "rejectedPlans" : [ ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }
db.loans.getIndexes() [ { "v" : 2, "key" : { "id" : 1 }, "name" : "id_", "ns" : "cashLoan.loans" }, { "v" : 2, "key" : { "status" : 1, "userId" : 1 }, "name" : "status_1_userId_1", "ns" : "cashLoan.loans" } ]
db.loans.find({"userId" : "59e022d33f239800129c61c7", }).explain() { "queryPlanner" : { "plannerVersion" : 1, "namespace" : "cashLoan.loans", "indexFilterSet" : false, "parsedQuery" : { "userId" : { "$eq" : "59e022d33f239800129c61c7" } }, "queryHash" : "B1777DBA", "planCacheKey" : "5776AB9C", "winningPlan" : { "stage" : "COLLSCAN", "filter" : { "userId" : { "$eq" : "59e022d33f239800129c61c7" } }, "direction" : "forward" }, "rejectedPlans" : [ ] }, "serverInfo" : { "host" : "RMBAP", "port" : 27017, "version" : "4.1.11", "gitVersion" : "1b8a9f5dc5c3314042b55e7415a2a25045b32a94" }, "ok" : 1 }
看完这个试验,明白了 {userId:1, status:1} vs {status:1,userId:1} 的差别了吗?
PS:这个case 里面其实status 区分度不高,这里只是作为实例展示。
三、总结:
- 注意使用上、使用频率上、区分高的/常用的在前面;
- 如果需要减少索引以节省memory/提高修改数据的性能的话,可以保留区分度高,常用的,去除区分度不高,不常用的索引。
- 学会用explain()验证分析性能:
DB 一般都有执行器优化的分析,MySQL & MongoDB 都是 用explain 来做分析。
语法上MySQL :
explain your_sql
MongoDB:
yoursql.explain()
总结典型:理想的查询是结合explain 的指标,他们通常是多个的混合:
- IXSCAN : 索引命中;
- Limit : 带limit;
- Projection : 相当于非 select * ;
- Docs Size less is better ;
- Docs Examined less is better ;
- nReturned=totalDocsExamined=totalKeysExamined ;
- SORT in index :sort 也是命中索引,否则,需要拿到数据后,再执行一遍排序;
- Limit Array elements : 限定数组返回的条数,数组也不应该太多数据,否则schema 设计不合理。
彩蛋
文末,还有最开头1个问题没回答:如果我的索引改加的都加了,还不够快,怎么办?
留个悬念,之后再写一篇。
更多PHP相关技术文章,请访问PHP教程栏目进行学习!
The above is the detailed content of Best Practices for MongoDB Indexes. For more information, please follow other related articles on the PHP Chinese website!

SQL is a standard language for managing relational databases, while MySQL is a specific database management system. SQL provides a unified syntax and is suitable for a variety of databases; MySQL is lightweight and open source, with stable performance but has bottlenecks in big data processing.

The SQL learning curve is steep, but it can be mastered through practice and understanding the core concepts. 1. Basic operations include SELECT, INSERT, UPDATE, DELETE. 2. Query execution is divided into three steps: analysis, optimization and execution. 3. Basic usage is such as querying employee information, and advanced usage is such as using JOIN connection table. 4. Common errors include not using alias and SQL injection, and parameterized query is required to prevent it. 5. Performance optimization is achieved by selecting necessary columns and maintaining code readability.

SQL commands are divided into five categories in MySQL: DQL, DDL, DML, DCL and TCL, and are used to define, operate and control database data. MySQL processes SQL commands through lexical analysis, syntax analysis, optimization and execution, and uses index and query optimizers to improve performance. Examples of usage include SELECT for data queries and JOIN for multi-table operations. Common errors include syntax, logic, and performance issues, and optimization strategies include using indexes, optimizing queries, and choosing the right storage engine.

Advanced query skills in SQL include subqueries, window functions, CTEs and complex JOINs, which can handle complex data analysis requirements. 1) Subquery is used to find the employees with the highest salary in each department. 2) Window functions and CTE are used to analyze employee salary growth trends. 3) Performance optimization strategies include index optimization, query rewriting and using partition tables.

MySQL is an open source relational database management system that provides standard SQL functions and extensions. 1) MySQL supports standard SQL operations such as CREATE, INSERT, UPDATE, DELETE, and extends the LIMIT clause. 2) It uses storage engines such as InnoDB and MyISAM, which are suitable for different scenarios. 3) Users can efficiently use MySQL through advanced functions such as creating tables, inserting data, and using stored procedures.

SQLmakesdatamanagementaccessibletoallbyprovidingasimpleyetpowerfultoolsetforqueryingandmanagingdatabases.1)Itworkswithrelationaldatabases,allowinguserstospecifywhattheywanttodowiththedata.2)SQL'sstrengthliesinfiltering,sorting,andjoiningdataacrosstab

SQL indexes can significantly improve query performance through clever design. 1. Select the appropriate index type, such as B-tree, hash or full text index. 2. Use composite index to optimize multi-field query. 3. Avoid over-index to reduce data maintenance overhead. 4. Maintain indexes regularly, including rebuilding and removing unnecessary indexes.

To delete a constraint in SQL, perform the following steps: Identify the constraint name to be deleted; use the ALTER TABLE statement: ALTER TABLE table name DROP CONSTRAINT constraint name; confirm deletion.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Notepad++7.3.1
Easy-to-use and free code editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool