search
HomeBackend DevelopmentPython TutorialRelated introduction to python mapping types

The mapping type is a combination of iterable key-value data items, which provides methods for accessing data items and their keys and values. In python3, two unordered mapping types are supported: built-in dict and Collections.defaultdict type in the standard library.

After python3.1, an ordered mapping type was also introduced: collections.OrderedDict.

Related recommendations: "python video"

Related introduction to python mapping types

Features:

1. Only hashable objects can be used for keys in map types, therefore, built-in fixed data types They can all be used as keys in mapping types (all built-in fixed types can be hashed). The fixed data types currently exposed are: int, float, complex, bool, str, tuple, frozenset;

2. The value associated with each key can be any object;

3. The mapping type is also iterable (iterable).

4. Mapping types can be compared using comparison operators, membership operators in/not in and the built-in len() function.

1.dict (dictionary)

The dict data type is an unordered, variable combination data type that contains 0 -n key-value pairs, the key is a reference to a hashable object, and the value can point to a reference to any object. Because the key is a hashable object reference, the uniqueness of the key is guaranteed; because the dict is mutable, data items can be added and removed from the dict; because the dict is unordered, there is no index , nor can it be operated using the sharding operator.

Creation of dictionary

1.dict() can be called as a function, and an empty dict is created at this time:

>>> dict()
{}
>>>

dict() When a mapping type parameter is passed in, a dictionary based on the parameter will be returned, such as:

>>> d1 = {"key1":"value1","key2":"value2"}
>>> dict(d1)
{'key1': 'value1', 'key2': 'value2'}
>>>

dict() can also accept sequence type parameters, but only if each data item in the sequence itself is a sequence containing two objects, the first is used as a key, and the second is used as a value, such as:

>>> d1 = dict((("k1","v1"),("k2","v2")))   #使用元组创建
>>> d1
{'k1': 'v1', 'k2': 'v2'}
>>> 
>>> d1 = dict([("k1","v1"),("k2","v2")])   #使用序列创建
>>> d1
{'k1': 'v1', 'k2': 'v2'}
>>>

dict() can also be created with keyword parameters, where the key is used as a keyword, Value as the value of the keyword, such as:

>>> dict(id=1,name="zhangsan",age=23)
{'id': 1, 'name': 'zhangsan', 'age': 23}
>>>

Note: The keyword must be a valid python identifier

2. Use curly braces to create a dict, empty {} will create an empty dict , a non-empty dict consists of multiple items, each item is separated by a comma, each item is created in the form of K:V, such as:

>>> dict2 = {"name":"kobe","age":33,"num":24}
>>> dict2
{'name': 'kobe', 'age': 33, 'num': 24}
>>>

3. Use dictionary connotation to create a dictionary

defaultdict is a subclass of dict, which supports all operations and methods of dict. The difference from dict is that if the dict does not contain a certain key, a KeyError exception will occur when obtaining the value through dict[x], but if it is defaultdict, a new item will be created with the key as the key and the value as default value.

2.collections.defaultdict (default dictionary)

Create collections.defaultdict

Create collections.defaultdict, through collections.defaultdict(), there are two ways to create according to the parameters:

* 1. Use the parameter type to create:

>>> import collections
>>> cd1 = collections.defaultdict(int)
>>> cd2 = collections.defaultdict(list)
>>> cd3 = collections.defaultdict(str)
>>> cd1["x"]
0
>>> cd2["x"]
[]
>>> cd3["x"]
''
>>>

Here, int, list, str, their default values ​​are 0, [], "

* 2. Use the function name to create:

>>> def name():
    return 'zhangsan'
>>> cd4 = collections.defaultdict(name)
>>> cd4["x"]
'zhangsan'
>>>

In this way, you can make the default value of the default dictionary More flexible.

It should be noted that collections.defaultdict() can pass in no parameters or None, but if so, the default value is not supported, such as:

>>> cd5 = collections.defaultdict()
>>> cd5["x"]
Traceback (most recent call last):
  File "<pyshell#254>", line 1, in <module>
    cd5["x"]
KeyError: &#39;x&#39;
>>>

Yes collections.defaultdict can replace the get(k,v) and setdefault() methods in dict.

##3.collections.OrderedDict

OrderedDict is a dict subclass that supports all dict methods, remembering the order in which keys were inserted. If a new entry overwrites an existing entry, the original insertion position remains unchanged. Deleting an entry and reinserting it will move it to the end.

class collections.OrderedDict([items])

Because they are ordered, two OrderedDicts are the same only when the order is the same. However, when comparing OrderedDict with an ordinary dict, the order will be ignored.


from collections import OrderedDict
d = {&#39;banana&#39;: 3, &#39;apple&#39;: 4}
od1 = OrderedDict({&#39;banana&#39;: 3, &#39;apple&#39;: 4})
od2 = OrderedDict({&#39;apple&#39;: 4, &#39;banana&#39;: 3})
print(od1 == od2)
print(od1 == d)

Running results

FalseTrue

3. Key method

OrderedDict.popitem(last=True)

This method of ordinary dict does not accept parameters and can only delete the last entry; OrderedDict is more flexible than dict and accepts a last parameter: when When last=True, it is the same as the ordinary method, conforming to LIFO order; when last=False, the first element is deleted, conforming to FIFO order.

from collections import OrderedDict
od1 = OrderedDict({&#39;banana&#39;: 3, &#39;apple&#39;: 4})
od1.popitem(False)
print(od1)

Running results

OrderedDict([(&#39;apple&#39;, 4)])

4. Simple enhancement

OrderedDict just maintains the order of insertion. When the entry is modified, the order will not be modified.

od1 = OrderedDict({&#39;banana&#39;: 3, &#39;apple&#39;: 4})
od1[&#39;banana&#39;] = 5print(od1)

Running results

OrderedDict([(&#39;banana&#39;, 5), (&#39;apple&#39;, 4)])

But sometimes we need to modify and insert the same The effect can be simply enhanced by rewriting the __setitem__() method to first delete the element and then insert it when modifying.

class EnhancedOrderedDict(OrderedDict):
    def __setitem__(self, key, value):        
        if key in self:
           del self[key]
       OrderedDict.__setitem__(self, key, value)

Test

eod = EnhancedOrderedDict({&#39;banana&#39;: 3, &#39;apple&#39;: 4})print(eod)
eod[&#39;banana&#39;] = 5print(eod)

Running result

EnhancedOrderedDict([(&#39;banana&#39;, 3), (&#39;apple&#39;, 4)])
EnhancedOrderedDict([(&#39;apple&#39;, 4), (&#39;banana&#39;, 5)])

The above is the detailed content of Related introduction to python mapping types. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Merging Lists in Python: Choosing the Right MethodMerging Lists in Python: Choosing the Right MethodMay 14, 2025 am 12:11 AM

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

How to concatenate two lists in python 3?How to concatenate two lists in python 3?May 14, 2025 am 12:09 AM

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Python concatenate list stringsPython concatenate list stringsMay 14, 2025 am 12:08 AM

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

Python execution, what is that?Python execution, what is that?May 14, 2025 am 12:06 AM

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Python: what are the key featuresPython: what are the key featuresMay 14, 2025 am 12:02 AM

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python: compiler or Interpreter?Python: compiler or Interpreter?May 13, 2025 am 12:10 AM

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Python For Loop vs While Loop: When to Use Which?Python For Loop vs While Loop: When to Use Which?May 13, 2025 am 12:07 AM

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Python loops: The most common errorsPython loops: The most common errorsMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool