


Wordcloud generated based on python
Word cloud has been a hot topic in the past two years. If you have the patience to spend 10 minutes to read this article Article, maybe you no longer have to envy those who can word cloud. It’s not a rocket science, you can learn it too. Come and try it!
In this article we explain how to make an English word cloud. In the next issue we will show you How to make a Chinese word cloud, please stay tuned expect!
Quickly generate word cloud
from wordcloud import WordCloud f = open(u'txt/AliceEN.txt','r').read() wordcloud = WordCloud(background_color="white",width=1000, height=860, margin=2).generate(f) # width,height,margin可以设置图片属性 # generate 可以对全部文本进行自动分词,但是他对中文支持不好,对中文的分词处理请看我的下一篇文章 #wordcloud = WordCloud(font_path = r'D:\Fonts\simkai.ttf').generate(f) # 你可以通过font_path参数来设置字体集 #background_color参数为设置背景颜色,默认颜色为黑色 import matplotlib.pyplot as plt plt.imshow(wordcloud) plt.axis("off") plt.show() wordcloud.to_file('test.png')
# Save the image, but in the example of the third module, the image size will be saved according to the mask
Custom font color
This code is mainly from wordcloud’s github, you can download the example from github
#!/usr/bin/env python """ Colored by Group Example ======================== Generating a word cloud that assigns colors to words based on a predefined mapping from colors to words """ from wordcloud import (WordCloud, get_single_color_func) import matplotlib.pyplot as plt class SimpleGroupedColorFunc(object): """Create a color function object which assigns EXACT colors to certain words based on the color to words mapping Parameters ---------- color_to_words : dict(str -> list(str)) A dictionary that maps a color to the list of words. default_color : str Color that will be assigned to a word that's not a member of any value from color_to_words. """ def __init__(self, color_to_words, default_color): self.word_to_color = {word: color for (color, words) in color_to_words.items() for word in words} self.default_color = default_color def __call__(self, word, **kwargs): return self.word_to_color.get(word, self.default_color) class GroupedColorFunc(object): """Create a color function object which assigns DIFFERENT SHADES of specified colors to certain words based on the color to words mapping. Uses wordcloud.get_single_color_func Parameters ---------- color_to_words : dict(str -> list(str)) A dictionary that maps a color to the list of words. default_color : str Color that will be assigned to a word that's not a member of any value from color_to_words. """ def __init__(self, color_to_words, default_color): self.color_func_to_words = [ (get_single_color_func(color), set(words)) for (color, words) in color_to_words.items()] self.default_color_func = get_single_color_func(default_color) def get_color_func(self, word): """Returns a single_color_func associated with the word""" try: color_func = next( color_func for (color_func, words) in self.color_func_to_words if word in words) except StopIteration: color_func = self.default_color_func return color_func def __call__(self, word, **kwargs): return self.get_color_func(word)(word, **kwargs) text = """The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren't special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess. There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you're Dutch. Now is better than never. Although never is often better than *right* now. If the implementation is hard to explain, it's a bad idea. If the implementation is easy to explain, it may be a good idea. Namespaces are one honking great idea -- let's do more of those!""" # Since the text is small collocations are turned off and text is lower-cased wc = WordCloud(collocations=False).generate(text.lower()) # 自定义所有单词的颜色 color_to_words = { # words below will be colored with a green single color function '#00ff00': ['beautiful', 'explicit', 'simple', 'sparse', 'readability', 'rules', 'practicality', 'explicitly', 'one', 'now', 'easy', 'obvious', 'better'], # will be colored with a red single color function 'red': ['ugly', 'implicit', 'complex', 'complicated', 'nested', 'dense', 'special', 'errors', 'silently', 'ambiguity', 'guess', 'hard'] } # Words that are not in any of the color_to_words values # will be colored with a grey single color function default_color = 'grey' # Create a color function with single tone # grouped_color_func = SimpleGroupedColorFunc(color_to_words, default_color) # Create a color function with multiple tones grouped_color_func = GroupedColorFunc(color_to_words, default_color) # Apply our color function # 如果你也可以将color_func的参数设置为图片,详细的说明请看 下一部分 wc.recolor(color_func=grouped_color_func) # Plot plt.figure() plt.imshow(wc, interpolation="bilinear") plt.axis("off") plt.show()
Use the background image to generate a word cloud and set a stop word set
This paragraph The code mainly comes from wordcloud's github. You can also download the example, original pictures and renderings on github.
#!/usr/bin/env python """ Image-colored wordcloud ======================= You can color a word-cloud by using an image-based coloring strategy implemented in ImageColorGenerator. It uses the average color of the region occupied by the word in a source image. You can combine this with masking - pure-white will be interpreted as 'don't occupy' by the WordCloud object when passed as mask. If you want white as a legal color, you can just pass a different image to "mask", but make sure the image shapes line up. """ from os import path from PIL import Image import numpy as np import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator d = path.dirname(__file__) # Read the whole text. text = open(path.join(d, 'alice.txt')).read() # read the mask / color image taken from # http://jirkavinse.deviantart.com/art/quot-Real-Life-quot-Alice-282261010 alice_coloring = np.array(Image.open(path.join(d, "alice_color.png"))) # 设置停用词 stopwords = set(STOPWORDS) stopwords.add("said") # 你可以通过 mask 参数 来设置词云形状 wc = WordCloud(background_color="white", max_words=2000, mask=alice_coloring, stopwords=stopwords, max_font_size=40, random_state=42) # generate word cloud wc.generate(text) # create coloring from image image_colors = ImageColorGenerator(alice_coloring) # show # 在只设置mask的情况下,你将会得到一个拥有图片形状的词云 plt.imshow(wc, interpolation="bilinear") plt.axis("off") plt.figure() # recolor wordcloud and show # we could also give color_func=image_colors directly in the constructor # 我们还可以直接在构造函数中直接给颜色 # 通过这种方式词云将会按照给定的图片颜色布局生成字体颜色策略 plt.imshow(wc.recolor(color_func=image_colors), interpolation="bilinear") plt.axis("off") plt.figure() plt.imshow(alice_coloring, cmap=plt.cm.gray, interpolation="bilinear") plt.axis("off") plt.show()
The display effect is as follows:
The above is the detailed content of Python + wordcloud learn to generate English word cloud in ten minutes. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

Dreamweaver Mac version
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 English version
Recommended: Win version, supports code prompts!
