search
HomeBackend DevelopmentPython TutorialUsing python to implement high-performance testing tools (1)

People who have been developing or testing developers for several years often feel confused. The development of new functions or the maintenance of old functions are basically piles of code. This article mainly talks about performance optimization in system design and architecture for everyone to learn. Some of the content involves specific products, some changes have been made, or test code demonstrations have been written separately.

Project background:

Implement a high-performance diameter test tool, accept 1000 and send 1000, and support up to 2000 messages per second in both directions. The source code of the diameter protocol is downloaded from http://sourceforge.net/projects/pyprotosim/. This open source package also supports SMPP, RADIUS, DHCP, LDAP, and the newly added protocol fields can be configured in the dictionary. It is really convenient if you need to modify the code. In the initial stage, in order to implement functions, we did not consider performance issues. Single threads were used in many places, and the initial performance could only support 50 messages. Hardware environment: SunFire 4170, 16 cores, 2.4 G per core

Several directions for Python performance optimization:

1. Change the python parser: Common python parsers include pysco, pypy, cython, jython and pysco no longer support python 2.7, so there is no test. It is said that it runs as fast as C language. I did a simple test on pypy and jython. pypy can be improved to 5-10 times on different machines. Although Jython can avoid the problem of python GIL (because jython runs on a java virtual machine), it seems from the test that Efficiency gains are minimal.

        2. Optimize the code

        3. Change the system architecture, multi-threading, multi-process or coroutine

Solution 1 : Changing the Python parser

If changing the Python parser can meet the performance requirements, it is the cheapest solution and does not require any changes to the code. The following code is just to illustrate the effect of pypy. It is a test code written separately and the result of running under windows. The running effect will be better on a Linux machine.

#!/usr/bin/env python
#coding=utf-8

import  time

def check(num):
    a = list(str(num))
    b = a[::-1]
    if a == b:
        return True
    return False

def test():
    all = xrange(1,10**7)
    for i in all:
        if check(i):
            if check(i**2):
                i**2
if __name__ == '__main__':
    start=time.time()
    test()
    print time.time()-start


The results of using python and pypy respectively

C:\Python27\python.exeD:/RCC/mp/src/test.py
14.4940001965

C:\pypy-2.1\pypy.exeD:/RCC/mp/src/test.py
4.37800002098

You can see the running results of pypy The effect is still obvious, although it can be increased by 5 times (on a Linux machine), 50*5, which is still far from 2000. pypy has no obvious effect on python multi-threading support, which will be mentioned later.

Let’s end it first. It’s too long and everyone seems tired. The next article will introduce the code optimization part.

[Recommended course: Python video tutorial]

The above is the detailed content of Using python to implement high-performance testing tools (1). For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:CSDN. If there is any infringement, please contact admin@php.cn delete
Python vs. C  : Understanding the Key DifferencesPython vs. C : Understanding the Key DifferencesApr 21, 2025 am 12:18 AM

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Python vs. C  : Which Language to Choose for Your Project?Python vs. C : Which Language to Choose for Your Project?Apr 21, 2025 am 12:17 AM

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

Reaching Your Python Goals: The Power of 2 Hours DailyReaching Your Python Goals: The Power of 2 Hours DailyApr 20, 2025 am 12:21 AM

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Maximizing 2 Hours: Effective Python Learning StrategiesMaximizing 2 Hours: Effective Python Learning StrategiesApr 20, 2025 am 12:20 AM

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Choosing Between Python and C  : The Right Language for YouChoosing Between Python and C : The Right Language for YouApr 20, 2025 am 12:20 AM

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python vs. C  : A Comparative Analysis of Programming LanguagesPython vs. C : A Comparative Analysis of Programming LanguagesApr 20, 2025 am 12:14 AM

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

2 Hours a Day: The Potential of Python Learning2 Hours a Day: The Potential of Python LearningApr 20, 2025 am 12:14 AM

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools