Home >Backend Development >PHP Tutorial >Calculation of small memory specifications in php (code example)
The content of this article is about the calculation of small memory specifications in PHP (code examples). It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you.
small memory allocation calculation bin_num
In the PHP source code, there is a calculation of small memory specifications, specifically in the zend_mm_small_size_to_bin function of Zend/zend_alloc.c, its purpose is to pass in a size , calculate the corresponding specifications. See the code:
if (size <= 64) { /* we need to support size == 0 ... */ return (size - !!size) >> 3; } else { t1 = size - 1; t2 = zend_mm_small_size_to_bit(t1) - 3; t1 = t1 >> t2; t2 = t2 - 3; t2 = t2 << 2; return (int)(t1 + t2); }
It can be seen that this code is divided into two situations for discussion:
1. The case where size is less than or equal to 64;
2. The case where size is greater than 64;
Let’s analyze these two situations in detail below.
SeeZEND_MM_BINS_INFO
This macro knows that when size is less than or equal to 64, it is an arithmetic sequence, increasing 8, so just use size divided by 8 (right shift by 3 bits in the source code) size >> 3</pre>
<li><p>But you must consider that size is equal to 8, 16 and so on, so <code>(size - 1) >> 3
Then we need to consider the situation of 0, so ## in the source code The processing of #-1 is
!!size. When size is 0,
!!0 = 0. So when size is 0,
-1 is converted into
-0, and finally there is the expression
(size - !!size) >> in the source code ; 3
t1 = size - 1; t2 = zend_mm_small_size_to_bit(t1) - 3; t1 = t1 >> t2; t2 = t2 - 3; t2 = t2 << 2; return (int)(t1 + t2);
/* num, size, count, pages */ #define ZEND_MM_BINS_INFO(_, x, y) \ _( 0, 8, 512, 1, x, y) \ _( 1, 16, 256, 1, x, y) \ _( 2, 24, 170, 1, x, y) \ _( 3, 32, 128, 1, x, y) \ _( 4, 40, 102, 1, x, y) \ _( 5, 48, 85, 1, x, y) \ _( 6, 56, 73, 1, x, y) \ _( 7, 64, 64, 1, x, y) \ _( 8, 80, 51, 1, x, y) \ _( 9, 96, 42, 1, x, y) \ _(10, 112, 36, 1, x, y) \ _(11, 128, 32, 1, x, y) \ _(12, 160, 25, 1, x, y) \ _(13, 192, 21, 1, x, y) \ _(14, 224, 18, 1, x, y) \ _(15, 256, 16, 1, x, y) \ _(16, 320, 64, 5, x, y) \ _(17, 384, 32, 3, x, y) \ _(18, 448, 9, 1, x, y) \ _(19, 512, 8, 1, x, y) \ _(20, 640, 32, 5, x, y) \ _(21, 768, 16, 3, x, y) \ _(22, 896, 9, 2, x, y) \ _(23, 1024, 8, 2, x, y) \ _(24, 1280, 16, 5, x, y) \ _(25, 1536, 8, 3, x, y) \ _(26, 1792, 16, 7, x, y) \ _(27, 2048, 8, 4, x, y) \ _(28, 2560, 8, 5, x, y) \ _(29, 3072, 4, 3, x, y) #endif /* ZEND_ALLOC_SIZES_H */
This is a boundary case, just like the previous one, the sizes that appear later are considered to be nearly reduced by one
2^4, 2^5, 2^6...
64 | 100 0000 80 | 101 0000 96 | 110 0000 112 | 111 0000 128 | 1000 0000 160 | 1010 0000 192 | 1100 0000 224 | 1110 0000 256 | 1 0000 0000 320 | 1 0100 0000 384 | 1 1000 0000 448 | 1 1100 0000 .....
1 in the binary number
1
int n = 16; if (size <= 0x00ff) {n -= 8; size = size << 8;} if (size <= 0x0fff) {n -= 4; size = size << 4;} if (size <= 0x3fff) {n -= 2; size = size << 2;} if (size <= 0x7fff) {n -= 1;} return n;
Assuming that the size we apply for is 65, then n here returns 7
7, 8, 9..., so let’s now take a look at how to calculate such data. The offset within the group
(size - 2^4 * 4) / 16 = size / 2^4 - 4 (size - 2^5 * 4) / 32 = size / 2^5 - 4 (size - 2^6 * 4) / 64 = szie / 2^6 - 4
Can we use
7, 8, 9
When size is 65, is the offset equal to
(64-64) / 2^4 = 0Calculate the starting position of the group
? 6
You can get the grouping informationAfter getting the grouping information, how do you know the starting position of each group
4n 4
We are looking at Look at the example of size=65
计算的偏移量是0
计算的起始位置是4*1 + 4 = 8
所以当size=65的bin_num就是起始位置加上偏移量 8 + 0 = 8
我们再看一个size=129的例子
二进制中最高位的1
的位数为8
然后用8减去3得到5
(129 - 1 - 32 * 4) / 64 = 0
偏移量是
计算起始位置是 4 * 2 + 4 = 12
两者相加就是 12 + 0 = 0
size=193
二进制中最高位的1
的位数为8
(193 - 1 - 32 * 4) / 64 = 2
偏移量是
计算起始位置是 4 * 2 + 4 = 12
两者相加就是 12 + 2 = 14
size=1793
二进制中最高位的1
的位数为11
(1793 - 1 - 256 * 4) / 256 = 3
偏移量是
计算起始位置是 4 * 5 + 4 = 24
两者相加就是 24 + 3 = 27
1 t1 = size - 1; 2 t2 = zend_mm_small_size_to_bit(t1) - 3; 3 t1 = t1 >> t2; 4 t2 = t2 - 3; 5 t2 = t2 << 2; 6 return (int)(t1 + t2);
t1 = size - 1;
是为了考虑size为64、128...这些边界情况
t2 = zend_mm_small_size_to_bit(t1) - 3;
这里调用了zend_mm_small_size_to_bit
这个函数,我们看看这个函数
/* higher set bit number (0->N/A, 1->1, 2->2, 4->3, 8->4, 127->7, 128->8 etc) */ int n = 16; if (size <= 0x00ff) {n -= 8; size = size << 8;} if (size <= 0x0fff) {n -= 4; size = size << 4;} if (size <= 0x3fff) {n -= 2; size = size << 2;} if (size <= 0x7fff) {n -= 1;} return n;
看注释我们就知道这个函数是用来返回当前size二进制中最高位1的位数,具体的做法呢其实就是二分法
我们通过zend_mm_small_size_to_bit
这个函数获取了size二进制中最高位1的位数,那么这个 -3
是什么神奇的操作呢
(size - 2^4 * 4) / 16 = size / 2^4 - 4 (size - 2^5 * 4) / 32 = size / 2^5 - 4 (size - 2^6 * 4) / 64 = szie / 2^6 - 4
这里获取二进制的位数是7、8、9...通过 -3
的操作来获取相应的 4、5、6...
上问的分析中提到,我们计算size在组内的偏移量的公式
t1 = t1 >> t2;</pre></h3>
<li><p>把t1右移t2位,这又是什么神奇的操作?</p></li>
<li><p>这里我们把最后计算bin_num的数学公式给写出来,它是等于每组的起始位置加上组内的偏移量</p></li>
<pre class="brush:php;toolbar:false">binnum = (4n + 4) + (size / 2^n - 4)
binnum = 4n + size / 2^n</pre>
<ul class=" list-paddingleft-2"><li><p>所以第三行的意思我们就知道了,就是size右移2^n次方为</p></li></ul>
<h4>第四行</h4>
<ul class=" list-paddingleft-2">
<li><p><code>t2 = t2 - 3;
这个好理解,可以参照上文得到每组的起始位置的方法
t2 = t2 << 2;
我们再看看bin_num的计算公式
binnum = (4n + 4) + (size / 2^n - 4) binnum = 4n + size / 2^n
那么这行就好理解了,就是计算每组的起始位置4n
对吧,左移两位就是乘以4
return (int)(t1 + t2);
这行没啥说的,就是返回了一个int类型的bin_num
The above is the detailed content of Calculation of small memory specifications in php (code example). For more information, please follow other related articles on the PHP Chinese website!