The content of this article is about the analysis of the logging module in Python (code examples). It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you.
1. Logging level
#debug: Priority 10, records debugging details, only enabled during debugging
info: Priority 20, log ordinary messages, report errors and warnings and wait.
warning: Priority 30, records relevant warning information.
error: priority level 40, record error information, program crash
critical: priority level 50, record error information
2. The main structure of the logging module
Looking at the source code of logging, we can see that there are four main classes to implement functions:
Loggers: Provides interfaces for direct use by the program, such as related configuration settings
Handlers: Transmits the logs generated by Loggers to the specified location, and sets the logs Save location;
Filters: Filter the output log;
Formatters: Control the output format of the log
Formatters
The Formatters object defines the log output format and has a variety of optional parameters.
Parameter | Meaning | |
---|---|---|
Logger’s name | ||
Log level in numerical form | ||
Log level in text form | ||
The full pathname of the module that calls the log output function, may not have | ||
The file name of the module that calls the log output function | ||
The module name for calling the log output function | ||
The function name for calling the log output function | ||
The line of code where the statement that calls the log output function is located | ||
The current time, expressed in unix notation Floating point representation of time | ||
When outputting log information, the number of milliseconds since the Logger was created | ||
The current time in string form, the default format is '2018-11-22 16:49:45,896', followed by the comma is milliseconds | ||
Thread ID, may not be available | ||
Thread name, may not be available | ||
Process ID, there may be no information output by | ||
Name | Detailed location | Description |
---|---|---|
logging.handlers.RotatingHandler | Log rollback method, supports the maximum number of log files and log file rollback | |
logging.handlers.TimeRotatingHandler | Log rollback method, Roll back log files within a certain time range | |
logging.handlers.SocketHandler | Remotely output logs to TCP/IP sockets | |
logging.handlers.DatagramHandler | Remote output logs to UDP sockets | |
logging.handlers.SMTPHandler | Remotely output logs to email address | |
logging.handlers.SysLogHandler | Log Output to syslog | |
logging.handlers.NTEventLogHandler | Remote output log to the event log of Windows NT/2000/xp | |
logging.handlers.MemoryHandler | The log is output to the specified buffer in memory | |
logging.handlers.HTTPHandler | Remote output to HTTP server through "GET" or "POST" |
Logger manages all logging methods.
from logging import error, debug, warning, info, fatal, critical, getLogger #返回一个Logger实例 #以'root'为名字的日志对象在Logger对象中只有一个实例 logger=getLogger('root') print('获取根日志对象',logger.root) print('获取manager',logger.manager) print('获取根日志对象的名字',logger.name) print('获取根日志对象记录水平',logger.level) print('获取根日志对象过滤器列表',logger.filters) print('获取根日志对象处理器列表',logger.handlers) print('获取根日志对象',logger.disabled) #设置日志记录水平 logger.setLevel('info') #输出日志信息,格式化输出 logger.info('this is %s','info',exc_info=1) #记录warning信息 logger.warning('') #记录error信息 logger.error('') #等价于logger.error('',exc_info=1) logger.exception('') #记录debug信息 logger.debug('') #记录critical信息 logger.critical('') #直接指定级别 logger.log('info','') #添加处理器 logger.addHandler() #移除处理器 logger.removeHandler() #判是否有处理器 logger.hasHandlers()3. Basic use of logger
Example:
import logging import sys def my_get_logger(appname): #获取logger实例,如果参数为空则返回root logger logger=logging.getLogger(appname) #创建日志输出格式 formatter=logging.Formatter('%(asctime)s %(levelname)s: %(message)s') #指定输出的文件路径 file_handler=logging.FileHandler('test.log') # 设置文件处理器,加载处理器格式 file_handler.setFormatter(formatter) #控制台日志 console_handler=logging.StreamHandler(sys.stdout) console_handler.formatter=formatter #为logger添加的日志处理器 logger.addHandler(file_handler) logger.addHandler(console_handler) #指定日志的最低输出级别,默认为warn级别 logger.setLevel(logging.INFO) return logger if __name__ == '__main__': logger=my_get_logger('test') logger.debug('this is debug info') logger.info('this is information') logger.warning('this is warning message') logger.error('this is error message') logger.fatal('this is fatal message,it is same ad logger.critical') logger.critical('this is critical message')
Result:
2018-11-22 16:31:34,023 INFO: this is information 2018-11-22 16:31:34,023 WARNING: this is warning message 2018-11-22 16:31:34,023 ERROR: this is error message 2018-11-22 16:31:34,024 CRITICAL: this is fatal message,it is same ad logger.critical 2018-11-22 16:31:34,024 CRITICAL: this is critical message4. Logger log Logical calling process of recording
- Record logs by calling logger.debug and other methods;
- First determine whether the log level of this record is Greater than the set level, if not, pass directly and no longer execute;
- Use the log information as a parameter to create a LogRecord logging object
- Filter the LogRecord object through the logger filter. If it is filtered, pass
- The log record object is filtered by the filter of the Handler processor
- Judgement Is the log level of this record greater than the level set by the Handler processor? If not, pass directly and no longer execute;
- Finally call the emit method of the processor to process the log record;
- Complete configuration through code, mainly through the getLogger method, but it is not easy to modify
- Achieved through the basicConfig method, which is fast but not hierarchical enough
- Through logging.config.fileConfig(filepath), file configuration
- Configure through the dictionary of dictConfig, which is a new configuration method introduced in py3.2 version
#logging.cong
[loggers]
#定义日志的对象名称是什么,注意必须定义root,否则报错
keys=root,main
[handlers]
#定义处理器的名字是什么,可以有多个,用逗号隔开
keys=consoleHandler
[formatters]
#定义输出格式对象的名字,可以有多个,用逗号隔开
keys=simpleFormatter
[logger_root]
#配置root对象的日志记录级别和使用的处理器
level=INFO
handlers=consoleHandler
[logger_main]
#配置main对象的日志记录级别和使用的处理器,qualname值得就是日志对象的名字
level=INFO
handlers=consoleHandler
qualname=main
#logger对象把日志传递给所有相关的handler的时候,会逐级向上寻找这个logger和它所有的父logger的全部handler,
#propagate=1表示会继续向上搜寻;
#propagate=0表示停止搜寻,这个参数涉及重复打印的坑。
propagate=0
[handler_consoleHandler]
#配置处理器consoleHandler
class=StreamHandler
level=WARNING
formatter=simpleFormatter
args=(sys,)
[formatter_simpleFormatter]
#配置输出格式过滤器simpleFormatter
format=%(asctime)-%(name)s-%(levelname)s-%(message)s
Note: You can see that both logger and Handler can set the log level, and the log output takes the highest level.
Dictionary form configuration is more powerful and flexible. Through the dictConfig function, we can convert configuration files in other formats into dictionaries, such as json, YAML, etc.
Example:
import yaml from logging.config import dictConfig import os filename=os.path.dirname(os.path.abspath(__file__)) with open(filename+'/logging.yaml','r') as f: log=yaml.load(f.read()) dictConfig(log)
#logging.yaml #注意:yaml格式严格,:后面一定要带空格 version: 1 formatters: simple: format: '%(asctime)s-%(name)s-%(levelname)s-%(message)s' handlers: console: class: logging.StreamHandler level: DEBUG formatter: simple stream: ext://sys.stdout console_err: class: logging.StreamHandler level: DEBUG formatter: simple stream: ext://sys.stderr loggers: simpleExample: level: DEBUG handlers: [console] propagate: no root: level: DEBUG handlers: [console_err]]6. Listening logger configuration changes
The logging.config.listen(port) function allows English programs to listen to new loggers on a socket Configuration information to achieve the purpose of changing the configuration at runtime without restarting the application. import logging.config
import logging
logging.config.fileConfig("logging.conf")
logger=logging.getLogger('test.listen')
#监听端口号9999
t=logging.config.listen(9999)
t.setDaemon(True)
t.start()
The above is the detailed content of Analysis of logging module in Python (code example). For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Zend Studio 13.0.1
Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
