search
HomeBackend DevelopmentPython TutorialAn explanation of the implementation method of Python+OpenCV image style migration

This article brings you an explanation of the implementation method of Python OpenCV image style migration. It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you.

Many people now like to take photos (selfies). You will get tired of playing with the limited filters and decorations too much, so there are apps that provide imitate famous painting styles functions, such as prisma, versa, etc., which can turn your photos into Van Gogh, The styles of masters such as Picasso and Munch.

An explanation of the implementation method of Python+OpenCV image style migration

This function is called "Image Style Transfer", which is almost all based on the CVPR 2015 paper "A It was developed based on the algorithms proposed in Neural Algorithm of Artistic Style and the ECCV 2016 paper "Perceptual Losses for Real-Time Style Transfer and Super-Resolution", as well as subsequent related research.

In layman's terms, it is to use neural network to pre-train the styles in famous paintings into models, and then apply them to different photos to generate new stylized images.

An explanation of the implementation method of Python+OpenCV image style migration

From "A Neural Algorithm of Artistic Style"

And because neural networks are increasingly used in computer vision , the famous visual development library OpenCV officially introduced DNN (Deep Neural Network) in version 3.3, supporting models of mainstream frameworks such as Caffe, TensorFlow, Torch/PyTorch, etc., which can be used to realize image recognition, detection, and classification , segmentation, coloring and other functions.
I just recently discovered that there is a Python example of image style transfer in OpenCV's Sample code (forgive my hindsight), which is based on the network model implementation in the ECCV 2016 paper. Therefore, even as a novice in artificial intelligence, you can play with models trained by others and experience the wonders of neural networks.

(See the end of the article for relevant codes and models)

OpenCV official code address: https://github.com/opencv/opencv/blob/3.4.0/samples/dnn/fast_neural_style Run the code by executing the command in the .py

directory:

python fast_neural_style.py --model starry_night.t7

model The parameter is to provide the path to the pre-trained model file. OpenCV does not provide downloading, but the You can find it in the reference project https://github.com/jcjohnson/fast-neural-style

Other settable parameters are:

  • input You can specify the original image/video. If not provided, the camera will be used to capture it in real time by default.

  • width, height, adjust the size of the processed image, setting it smaller can improve the calculation speed. On my own computer, 300x200 converted video can reach 15 fps.

  • median_filter The window size of the median filter is used to smooth the result image. This has little impact on the result.

The effect after execution (taken from jcjohnson/fast-neural-style):

An explanation of the implementation method of Python+OpenCV image style migration

Original Image

An explanation of the implementation method of Python+OpenCV image style migration

ECCV16 models

An explanation of the implementation method of Python+OpenCV image style migration

##instance_norm models

The core code is actually very short, that is

Load the model-> Read the image-> Calculate-> Output the image, I further simplified it based on the official example:

import cv2
# 加载模型
net = cv2.dnn.readNetFromTorch('the_scream.t7')
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV);
# 读取图片
image = cv2.imread('test.jpg')
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(image, 1.0, (w, h), (103.939, 116.779, 123.680), swapRB=False, crop=False)
# 进行计算
net.setInput(blob)
out = net.forward()
out = out.reshape(3, out.shape[2], out.shape[3])
out[0] += 103.939
out[1] += 116.779
out[2] += 123.68
out /= 255
out = out.transpose(1, 2, 0)
# 输出图片
cv2.imshow('Styled image', out)
cv2.waitKey(0)
In addition, a version with real-time comparison of multiple effects has been modified (the calculation amount is large and it is very laggy), and it has also been uploaded in the code.

An explanation of the implementation method of Python+OpenCV image style migration

PS: When I watched Zhao Lei’s concert two days ago, I also said: There are a lot of background MVs for his concerts The use of image binarization, edge detection and other operations reminds me of the big assignments in digital image processing classes in the past... Now that the efficiency of image style transfer has reached real-time, I believe it will be used frequently in the future.

The above is the detailed content of An explanation of the implementation method of Python+OpenCV image style migration. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:segmentfault思否. If there is any infringement, please contact admin@php.cn delete
The Main Purpose of Python: Flexibility and Ease of UseThe Main Purpose of Python: Flexibility and Ease of UseApr 17, 2025 am 12:14 AM

Python's flexibility is reflected in multi-paradigm support and dynamic type systems, while ease of use comes from a simple syntax and rich standard library. 1. Flexibility: Supports object-oriented, functional and procedural programming, and dynamic type systems improve development efficiency. 2. Ease of use: The grammar is close to natural language, the standard library covers a wide range of functions, and simplifies the development process.

Python: The Power of Versatile ProgrammingPython: The Power of Versatile ProgrammingApr 17, 2025 am 12:09 AM

Python is highly favored for its simplicity and power, suitable for all needs from beginners to advanced developers. Its versatility is reflected in: 1) Easy to learn and use, simple syntax; 2) Rich libraries and frameworks, such as NumPy, Pandas, etc.; 3) Cross-platform support, which can be run on a variety of operating systems; 4) Suitable for scripting and automation tasks to improve work efficiency.

Learning Python in 2 Hours a Day: A Practical GuideLearning Python in 2 Hours a Day: A Practical GuideApr 17, 2025 am 12:05 AM

Yes, learn Python in two hours a day. 1. Develop a reasonable study plan, 2. Select the right learning resources, 3. Consolidate the knowledge learned through practice. These steps can help you master Python in a short time.

Python vs. C  : Pros and Cons for DevelopersPython vs. C : Pros and Cons for DevelopersApr 17, 2025 am 12:04 AM

Python is suitable for rapid development and data processing, while C is suitable for high performance and underlying control. 1) Python is easy to use, with concise syntax, and is suitable for data science and web development. 2) C has high performance and accurate control, and is often used in gaming and system programming.

Python: Time Commitment and Learning PacePython: Time Commitment and Learning PaceApr 17, 2025 am 12:03 AM

The time required to learn Python varies from person to person, mainly influenced by previous programming experience, learning motivation, learning resources and methods, and learning rhythm. Set realistic learning goals and learn best through practical projects.

Python: Automation, Scripting, and Task ManagementPython: Automation, Scripting, and Task ManagementApr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python and Time: Making the Most of Your Study TimePython and Time: Making the Most of Your Study TimeApr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Games, GUIs, and MorePython: Games, GUIs, and MoreApr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment