


How to implement serialization and deserialization of objects in Java? (two methods)
What this article brings to you is about how to implement serialization and deserialization of objects in Java? (Two methods) have certain reference value. Friends in need can refer to it. I hope it will be helpful to you.
Introduction:
Serialization is the process of converting the state information of an object into a form that can be stored or transmitted. During serialization, the object writes its past state to a temporary Or persistent storage, deserialization is the process of re-creating an object from temporary or persistent storage.
The role of serialization:
It is like storing data in the database and persisting some data into the database. Sometimes it is necessary to persist the object, although the object state is persisted. There are many ways, but Java provides us with a very convenient way, that is, serialization. Serialization can realize direct conversion between objects and files, and the implementation details are hidden from us.
Three specific uses:
Persistently save the object’s status information to the hard disk
Transmit the object information over the network
Deep cloning (That is, serialization and then deserialization)
Method 1: Implement the Serializable interface, implement the Serializable interface through the serialization stream
, and serialize and deserialize the object through ObjectOutputStream and ObjectInputStream.
import java.io.*; public class User implements Serializable { private static final long serialVersionUID = 1L; private String name; private int age; public User(String name, int age) { this.name = name; this.age = age; } @Override public String toString() { return "User{" + "name='" + name + '\'' + ", age=" + age + '}'; } public static void main(String[] args) throws IOException, ClassNotFoundException { // User user = new User("gol",22); // ByteArrayOutputStream bo = new ByteArrayOutputStream(); // ObjectOutputStream oo = new ObjectOutputStream(bo); // oo.writeObject(user);//序列化.user写入字节数组流中 // ByteArrayInputStream bi = new ByteArrayInputStream(bo.toByteArray()); // ObjectInputStream oi = new ObjectInputStream(bi); // User userSer = (User) oi.readObject();//反序列化 // System.out.println(userSer); User user = new User("gol",22); FileOutputStream fos = new FileOutputStream("a.txt"); ObjectOutputStream oo = new ObjectOutputStream(fos); oo.writeObject(user);//序列化.user写入文件中 FileInputStream fis = new FileInputStream("a.txt"); ObjectInputStream oi = new ObjectInputStream(fis); User userSer = (User) oi.readObject();//反序列化 System.out.println(userSer); oi.close(); fis.close(); oo.close(); fos.close(); } }
Method 2: Implement the Externalizable interface and rewrite the writeExternal and readExternal methods
The Externalizable interface inherits the Serializable interface and encapsulates two methods for us, one for serialization and one for Deserialize. This method serializes attributes. Note that the transient modifier will lose its effect in this method. That is to say, the attributes modified by transient will still be serialized as long as you serialize the attribute in the writeExternal method.
import java.io.*; public class User implements Externalizable { private static final long serialVersionUID = 1L; private String name; private int age; public User() { } public User(String name, int age) { this.name = name; this.age = age; } @Override public String toString() { return "User{" + "name='" + name + '\'' + ", age=" + age + '}'; } @Override public void writeExternal(ObjectOutput out) throws IOException { out.writeObject(this.name);//将属性分别序列化 out.writeObject(this.age); } @Override public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { this.name=(String)in.readObject();//反序列化属性 this.age=(int)in.readObject(); } public static void main(String[] args) throws IOException, ClassNotFoundException { FileOutputStream fos = new FileOutputStream("a.txt"); ObjectOutputStream oo = new ObjectOutputStream(fos); FileInputStream fis = new FileInputStream("a.txt"); ObjectInputStream oi = new ObjectInputStream(fis); User user = new User("gol",19); user.writeExternal(oo);//序列化 User userEnr = new User(); userEnr.readExternal(oi);//反序列化 System.out.println(userEnr); oi.close(); fis.close(); oo.close(); fos.close(); } }
Summary:
Note the following three points:
The Serializable interface is a mark interface and an empty interface, used to identify that the class can be serialized.
Transient is an attribute modifier, and the attributes modified by it will not be serialized. However, if you use method 2, it is clearly stated that the attribute serialization can also be serialized.
The serialVersionUID attribute is the serialization ID of the class. If the serialVersionUID attribute of the serialized object and the deserialized object are different, an error will be reported.
The above is the detailed content of How to implement serialization and deserialization of objects in Java? (two methods). For more information, please follow other related articles on the PHP Chinese website!

InnoDBBufferPool reduces disk I/O by caching data and indexing pages, improving database performance. Its working principle includes: 1. Data reading: Read data from BufferPool; 2. Data writing: After modifying the data, write to BufferPool and refresh it to disk regularly; 3. Cache management: Use the LRU algorithm to manage cache pages; 4. Reading mechanism: Load adjacent data pages in advance. By sizing the BufferPool and using multiple instances, database performance can be optimized.

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

MySQL is worth learning because it is a powerful open source database management system suitable for data storage, management and analysis. 1) MySQL is a relational database that uses SQL to operate data and is suitable for structured data management. 2) The SQL language is the key to interacting with MySQL and supports CRUD operations. 3) The working principle of MySQL includes client/server architecture, storage engine and query optimizer. 4) Basic usage includes creating databases and tables, and advanced usage involves joining tables using JOIN. 5) Common errors include syntax errors and permission issues, and debugging skills include checking syntax and using EXPLAIN commands. 6) Performance optimization involves the use of indexes, optimization of SQL statements and regular maintenance of databases.

MySQL is suitable for beginners to learn database skills. 1. Install MySQL server and client tools. 2. Understand basic SQL queries, such as SELECT. 3. Master data operations: create tables, insert, update, and delete data. 4. Learn advanced skills: subquery and window functions. 5. Debugging and optimization: Check syntax, use indexes, avoid SELECT*, and use LIMIT.

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.

MySQL is an open source relational database management system that is widely used in Web development. Its key features include: 1. Supports multiple storage engines, such as InnoDB and MyISAM, suitable for different scenarios; 2. Provides master-slave replication functions to facilitate load balancing and data backup; 3. Improve query efficiency through query optimization and index use.

SQL is used to interact with MySQL database to realize data addition, deletion, modification, inspection and database design. 1) SQL performs data operations through SELECT, INSERT, UPDATE, DELETE statements; 2) Use CREATE, ALTER, DROP statements for database design and management; 3) Complex queries and data analysis are implemented through SQL to improve business decision-making efficiency.

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools