search
HomeBackend DevelopmentPython TutorialA brief discussion on dictionaries and hash tables in Python and the resolution of hash conflicts

The content of this article is about a brief discussion of dictionaries and hash tables in Python and the resolution of hash conflicts. It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you.

Python uses hash tables to implement dict.

A hash table is actually a sparse array (an array that always has blank elements is called a sparse array). In general books, the units in a hash table are usually called buckets. exist dict In the hash table, each key-value pair occupies a table element, and each table element has two parts, one is a reference to the key, and the other is a reference to the value. Because each table cell is the same size, you can read a table cell by offset.

Python will try to ensure that about one-third of the table elements are empty. When this threshold is almost reached, it will expand and copy the original hash table to a larger hash table. .

If you want to put an object into a hash table, you must first calculate the hash value of the element key. This requires that the key must be hashable.

A hashable object must meet the following conditions:

Support the hash() function, and the hash value obtained through the __hash__() method is unchanged.

Supports equality detection through the __eq__() method.

If a == b is true, then hash(a) == hash(b) is also true.

The following mainly explains the hash table algorithm.

To get the key The value search_value corresponding to search_key, Python will first call hash(search_key) to calculate search_key The hash value of the value, the lowest few digits of this value are used as offsets, and the table element is searched in the hash table (the specific number depends on the size of the current hash table). If the found table element is empty, KeyError is thrown Exception; if it is not empty, there will be a pair of found_key:found_value in the table element, check search_key and found_key Whether they are equal, if so, return found_value. If they are not equal, this situation is called a hash collision.

In order to solve the hash conflict, the algorithm will take a few more bits in the hash value, then process it with a special method, and use the new value obtained as an offset to search in the hash table table element, if the found table element is empty, a KeyError exception will also be thrown; if it is not empty, compare the keys to see if they are consistent, and return the corresponding value if they are consistent; if a hash conflict is found, repeat the above steps.

Adding a new element is almost the same as the above process, except that when an empty table element is found, the new element will be put in. If it is not empty, the hash will be repeated and the search will continue.

When to go When a new element is added to the dict and a hash conflict occurs, the new element may be arranged to be stored in another location. So the following situation will happen: dict([key1, value1], [key2, value2]) and dict([key2, value2], [key1, value1]) Two dictionaries are equal when compared, but if the hashes of key1 and key2 conflict, the order of the two keys in the dictionary is different.

Whenever, go Add new keys to dict, python The parser may decide to expand the dictionary. The result of expansion is to create a larger hash table and add existing elements in the dictionary to the new hash table. New hash conflicts may occur during this process, causing the order of keys in the new hash table to change. What happens if you iterate over a dictionary while adding new keys to it? Unfortunately, the capacity was expanded. Unfortunately, the order of the keys changed, and then orz.

Since the hash table must be sparse, its space consumption must be much larger. This is a typical space-for-time trade-off.

The above is the detailed content of A brief discussion on dictionaries and hash tables in Python and the resolution of hash conflicts. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:博客园. If there is any infringement, please contact admin@php.cn delete
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment