


A brief discussion on dictionaries and hash tables in Python and the resolution of hash conflicts
The content of this article is about a brief discussion of dictionaries and hash tables in Python and the resolution of hash conflicts. It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you.
Python uses hash tables to implement dict.
A hash table is actually a sparse array (an array that always has blank elements is called a sparse array). In general books, the units in a hash table are usually called buckets. exist dict In the hash table, each key-value pair occupies a table element, and each table element has two parts, one is a reference to the key, and the other is a reference to the value. Because each table cell is the same size, you can read a table cell by offset.
Python will try to ensure that about one-third of the table elements are empty. When this threshold is almost reached, it will expand and copy the original hash table to a larger hash table. .
If you want to put an object into a hash table, you must first calculate the hash value of the element key. This requires that the key must be hashable.
A hashable object must meet the following conditions:
Support the hash() function, and the hash value obtained through the __hash__() method is unchanged.
Supports equality detection through the __eq__() method.
If a == b is true, then hash(a) == hash(b) is also true.
The following mainly explains the hash table algorithm.
To get the key
The value search_value corresponding to search_key, Python will first call hash(search_key) to calculate
search_key
The hash value of the value, the lowest few digits of this value are used as offsets, and the table element is searched in the hash table (the specific number depends on the size of the current hash table). If the found table element is empty, KeyError is thrown
Exception; if it is not empty, there will be a pair of found_key:found_value in the table element, check search_key and found_key
Whether they are equal, if so, return found_value. If they are not equal, this situation is called a hash collision.
In order to solve the hash conflict, the algorithm will take a few more bits in the hash value, then process it with a special method, and use the new value obtained as an offset to search in the hash table table element, if the found table element is empty, a KeyError exception will also be thrown; if it is not empty, compare the keys to see if they are consistent, and return the corresponding value if they are consistent; if a hash conflict is found, repeat the above steps.
Adding a new element is almost the same as the above process, except that when an empty table element is found, the new element will be put in. If it is not empty, the hash will be repeated and the search will continue.
When to go When a new element is added to the dict and a hash conflict occurs, the new element may be arranged to be stored in another location. So the following situation will happen: dict([key1, value1], [key2, value2]) and dict([key2, value2], [key1, value1]) Two dictionaries are equal when compared, but if the hashes of key1 and key2 conflict, the order of the two keys in the dictionary is different.
Whenever, go Add new keys to dict, python The parser may decide to expand the dictionary. The result of expansion is to create a larger hash table and add existing elements in the dictionary to the new hash table. New hash conflicts may occur during this process, causing the order of keys in the new hash table to change. What happens if you iterate over a dictionary while adding new keys to it? Unfortunately, the capacity was expanded. Unfortunately, the order of the keys changed, and then orz.
Since the hash table must be sparse, its space consumption must be much larger. This is a typical space-for-time trade-off.
The above is the detailed content of A brief discussion on dictionaries and hash tables in Python and the resolution of hash conflicts. For more information, please follow other related articles on the PHP Chinese website!

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6
Visual web development tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment