Home >Web Front-end >JS Tutorial >JS numerical type array deduplication
This time I will bring you the deduplication of JS numerical type arrays. What are the precautions for deduplication of JS numerical type arrays? The following is a practical case, let’s take a look.
Preface
This article mainly introduces the relevant content about constructing a binary tree with js to deduplicate and optimize numerical arrays. It is shared for your reference. Learning, I won’t say much more below, let’s take a look at the detailed introduction.
Common two-layer loop to implement array deduplication
let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2] let newArr = [] for (let i = 0; i < arr.length; i++) { let unique = true for (let j = 0; j < newArr.length; j++) { if (newArr[j] === arr[i]) { unique = false break } } if (unique) { newArr.push(arr[i]) } } console.log(newArr)
Build a binary tree to achieve deduplication (only applicable to numeric types array)
Construct the previously traversed elements into a binary tree. Each node in the tree satisfies: the value of the left child node< the value of the current node< The value of the right child node
This optimizes the process of determining whether the element has appeared before
If the element is larger than the current node, you only need to determine whether the element is in the right subtree of the node It only needs to appear before
If the element is smaller than the current node, you only need to determine whether the element has appeared in the left subtree of the node
let arr = [0, 1, 2, 2, 5, 7, 11, 7, 6, 4,5, 2, 2] class Node { constructor(value) { this.value = value this.left = null this.right = null } } class BinaryTree { constructor() { this.root = null this.arr = [] } insert(value) { let node = new Node(value) if (!this.root) { this.root = node this.arr.push(value) return this.arr } let current = this.root while (true) { if (value > current.value) { if (current.right) { current = current.right } else { current.right = node this.arr.push(value) break } } if (value < current.value) { if (current.left) { current = current.left } else { current.left = node this.arr.push(value) break } } if (value === current.value) { break } } return this.arr } } let binaryTree = new BinaryTree() for (let i = 0; i < arr.length; i++) { binaryTree.insert(arr[i]) } console.log(binaryTree.arr)
Optimization ideas 1. Record the maximum and minimum values
Record the maximum and minimum values of the inserted elements. If it is larger than the largest element or smaller than the smallest element, insert it directly
let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2] class Node { constructor(value) { this.value = value this.left = null this.right = null } } class BinaryTree { constructor() { this.root = null this.arr = [] this.max = null this.min = null } insert(value) { let node = new Node(value) if (!this.root) { this.root = node this.arr.push(value) this.max = value this.min = value return this.arr } if (value > this.max) { this.arr.push(value) this.max = value this.findMax().right = node return this.arr } if (value < this.min) { this.arr.push(value) this.min = value this.findMin().left = node return this.arr } let current = this.root while (true) { if (value > current.value) { if (current.right) { current = current.right } else { current.right = node this.arr.push(value) break } } if (value < current.value) { if (current.left) { current = current.left } else { current.left = node this.arr.push(value) break } } if (value === current.value) { break } } return this.arr } findMax() { let current = this.root while (current.right) { current = current.right } return current } findMin() { let current = this.root while (current.left) { current = current.left } return current } } let binaryTree = new BinaryTree() for (let i = 0; i < arr.length; i++) { binaryTree.insert(arr[i]) } console.log(binaryTree.arr)
Optimization idea two, build a red-black tree
Build a red-black tree, balance the height of the tree
For information about red-black trees, please see red-black Insertion of tree
let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2] console.log(Array.from(new Set(arr))) class Node { constructor(value) { this.value = value this.left = null this.right = null this.parent = null this.color = 'red' } } class RedBlackTree { constructor() { this.root = null this.arr = [] } insert(value) { let node = new Node(value) if (!this.root) { node.color = 'black' this.root = node this.arr.push(value) return this } let cur = this.root let inserted = false while (true) { if (value > cur.value) { if (cur.right) { cur = cur.right } else { cur.right = node this.arr.push(value) node.parent = cur inserted = true break } } if (value < cur.value) { if (cur.left) { cur = cur.left } else { cur.left = node this.arr.push(value) node.parent = cur inserted = true break } } if (value === cur.value) { break } } // 调整树的结构 if(inserted){ this.fixTree(node) } return this } fixTree(node) { if (!node.parent) { node.color = 'black' this.root = node return } if (node.parent.color === 'black') { return } let son = node let father = node.parent let grandFather = father.parent let directionFtoG = father === grandFather.left ? 'left' : 'right' let uncle = grandFather[directionFtoG === 'left' ? 'right' : 'left'] let directionStoF = son === father.left ? 'left' : 'right' if (!uncle || uncle.color === 'black') { if (directionFtoG === directionStoF) { if (grandFather.parent) { grandFather.parent[grandFather.parent.left === grandFather ? 'left' : 'right'] = father father.parent = grandFather.parent } else { this.root = father father.parent = null } father.color = 'black' grandFather.color = 'red' father[father.left === son ? 'right' : 'left'] && (father[father.left === son ? 'right' : 'left'].parent = grandFather) grandFather[grandFather.left === father ? 'left' : 'right'] = father[father.left === son ? 'right' : 'left'] father[father.left === son ? 'right' : 'left'] = grandFather grandFather.parent = father return } else { grandFather[directionFtoG] = son son.parent = grandFather son[directionFtoG] && (son[directionFtoG].parent = father) father[directionStoF] = son[directionFtoG] father.parent = son son[directionFtoG] = father this.fixTree(father) } } else { father.color = 'black' uncle.color = 'black' grandFather.color = 'red' this.fixTree(grandFather) } } } let redBlackTree = new RedBlackTree() for (let i = 0; i < arr.length; i++) { redBlackTree.insert(arr[i]) } console.log(redBlackTree.arr)
Other deduplication methods
##Deduplication through Set object
[...new Set(arr)]Use
sort()
reduce() method to remove duplicates
compare(2, '2') returns 0; and when reduce(), perform congruent comparison
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let newArr = [] arr.sort((a, b) => { let res = a - b if (res !== 0) { return res } else { if (a === b) { return 0 } else { if (typeof a === 'number') { return -1 } else { return 1 } } } }).reduce((pre, cur) => { if (pre !== cur) { newArr.push(cur) return cur } return pre }, null)pass
includes()
map() Method to remove duplicates
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let newArr = [] arr.map(a => !newArr.includes(a) && newArr.push(a))By
includes()
reduce() Method to remove duplicates
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let newArr = arr.reduce((pre, cur) => { !pre.includes(cur) && pre.push(cur) return pre }, [])Deduplication of JSON object methods through object key values
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let obj = {} arr.map(a => { if(!obj[JSON.stringify(a)]){ obj[JSON.stringify(a)] = 1 } }) console.log(Object.keys(obj).map(a => JSON.parse(a)))I believe you have mastered the method after reading the case in this article. For more exciting information, please pay attention to other related articles on the PHP Chinese website! Recommended reading:
Basic performance optimization of front-end web pages
The above is the detailed content of JS numerical type array deduplication. For more information, please follow other related articles on the PHP Chinese website!