Home >Web Front-end >JS Tutorial >How to implement the longest common subsequence in javascript

How to implement the longest common subsequence in javascript

亚连
亚连Original
2018-06-07 17:01:032089browse

The longest common sequence (longest common sequence) and the longest common substring (longest common substring) are not the same thing. The following article mainly introduces you to the relevant information about the implementation of the longest common subsequence in JavaScript. , friends in need can refer to it.

Introduction

The Longest Common Subsequence LCS is to extract all the possible subsequences from the given two sequences X and Y. The possible extra characters are arranged in the order in which they are arranged in the original sequence. The algorithm for LCS problems has a wide range of uses. For example, in the management of different versions of software, the LCS algorithm is used to find the similarities and differences between the old and new versions; in software testing, the LCS algorithm is used to compare recorded and played back sequences. In the field of genetic engineering, the LCS algorithm is used The algorithm checks the similarities and differences between the patient's DNA strand and the bond's DNA strand; in the anti-plagiarism system, the LCS algorithm is used to check the plagiarism rate of the paper. The LCS algorithm can also be used for program code similarity measurement, human running sequence retrieval, video segment matching, etc., so research on the LCS algorithm has high application value.

Basic concepts

Subsequence: A subsequence of a specific sequence is zero or more elements in a given sequence The result obtained after removing it (without changing the relative order between elements). For example, the subsequences of the sequence 23195a5eab8013c21303d3d24e81fe27 are: 4e2154b1242725e74a11c55ea3967ed3, 2cf3a2d5a55d4ffa7aceebabd439c436, d49cac77f4b401d40ffdc9f73f3b3c2f m(i-1, j-1) 1 (m(i, j) cannot be less than m(i-1, j-1) 1, the reason is obvious) , then we can deduce the contradictory result that m(i-1, j-1) is not the longest.

The second one is a bit tricky. When A[i] != B[j], it is still a disproof, assuming m(i, j) > max( m(i-1, j), m(i, j-1) ).

By disproving the hypothesis, it can be obtained that m(i, j) > m(i-1, j). This can be deduced that A[i] must be in the LCS sequence corresponding to m(i, j) (contradictory evidence is available). And since A[i] != B[j], B[j] must not be in the LCS sequence corresponding to m(i, j). So it can be deduced that m(i, j) = m(i, j-1). This leads to results that contradict the hypothesis anyway.

Get certified.

We now use the following equation to continue filling in the table.

Program implementation

//by 司徒正美
function LCS(str1, str2){
  var rows = str1.split("")
  rows.unshift("")
  var cols = str2.split("")
  cols.unshift("")
  var m = rows.length 
  var n = cols.length 
  var dp = []
  for(var i = 0; i < m; i++){ 
   dp[i] = []
   for(var j = 0; j < n; j++){ 
    if(i === 0 || j === 0){
     dp[i][j] = 0
     continue
    }
    
    if(rows[i] === cols[j]){ 
     dp[i][j] = dp[i-1][j-1] + 1 //对角+1
    }else{
     dp[i][j] = Math.max( dp[i-1][j], dp[i][j-1]) //对左边,上边取最大
    }
   }
   console.log(dp[i].join(""))//调试
  } 
  return dp[i-1][j-1]
 }

LCS can be further simplified, just by moving the position, eliminating the need to generate a new array

//by司徒正美
function LCS(str1, str2){
 var m = str1.length 
 var n = str2.length
 var dp = [new Array(n+1).fill(0)] //第一行全是0
 for(var i = 1; i <= m; i++){ //一共有m+1行
  dp[i] = [0] //第一列全是0
  for(var j = 1; j <= n; j++){//一共有n+1列
   if(str1[i-1] === str2[j-1]){ 
    //注意这里,str1的第一个字符是在第二列中,因此要减1,str2同理
    dp[i][j] = dp[i-1][j-1] + 1 //对角+1
   } else {
     dp[i][j] = Math.max( dp[i-1][j], dp[i][j-1]) 
   }
  }
 } 
 return dp[m][n];
}

Print an LCS

#We will give the printing function and first look at how to print one. We start looking from the lower right corner and end at the top line. Therefore the target string is constructed in reverse order. In order to avoid using troublesome intermediate quantities such as stringBuffer, we can implement it recursively. Each time the program is executed, only one string is returned, otherwise an empty string is returned. PrintLCS(x,y,...) str[i ] Add them together to get the string we require.

We write another method to verify whether the string we get is a real LCS string. As a person who is already working, I cannot write code like a student in school and put it online without doing unit testing for others to step on.

//by 司徒正美,打印一个LCS
function printLCS(dp, str1, str2, i, j){
 if (i == 0 || j == 0){
  return "";
 }
 if( str1[i-1] == str2[j-1] ){
  return printLCS(dp, str1, str2, i-1, j-1) + str1[i-1];
 }else{
  if (dp[i][j-1] > dp[i-1][j]){
   return printLCS(dp, str1, str2, i, j-1);
  }else{
   return printLCS(dp, str1, str2, i-1, j);
  }
 }
}
//by司徒正美, 将目标字符串转换成正则,验证是否为之前两个字符串的LCS
function validateLCS(el, str1, str2){
 var re = new RegExp( el.split("").join(".*") )
 console.log(el, re.test(str1),re.test(str2))
 return re.test(str1) && re.test(str2)
}

Use:

function LCS(str1, str2){
 var m = str1.length 
 var n = str2.length
 //....略,自行补充
 var s = printLCS(dp, str1, str2, m, n)
 validateLCS(s, str1, str2)
 return dp[m][n]
}
var c1 = LCS( "ABCBDAB","BDCABA");
console.log(c1) //4 BCBA、BCAB、BDAB
var c2 = LCS("13456778" , "357486782" );
console.log(c2) //5 34678 
var c3 = LCS("ACCGGTCGAGTGCGCGGAAGCCGGCCGAA" ,"GTCGTTCGGAATGCCGTTGCTCTGTAAA" );
console.log(c3) //20 GTCGTCGGAAGCCGGCCGAA

Print all LCS

The idea is similar to the above , let us note that there is a Math.max value in the LCS method, which actually integrates three situations, so three strings can be forked. Our method will return an es6 collection object for automatic removal. Then each time the new set is used to merge the strings of the old set.

//by 司徒正美 打印所有LCS
function printAllLCS(dp, str1, str2, i, j){
 if (i == 0 || j == 0){
  return new Set([""])
 }else if(str1[i-1] == str2[j-1]){
  var newSet = new Set()
  printAllLCS(dp, str1, str2, i-1, j-1).forEach(function(el){
   newSet.add(el + str1[i-1])
  })
  return newSet
 }else{
  var set = new Set()
  if (dp[i][j-1] >= dp[i-1][j]){
   printAllLCS(dp, str1, str2, i, j-1).forEach(function(el){
    set.add(el)
   })
  }
  if (dp[i-1][j] >= dp[i][j-1]){//必须用>=,不能简单一个else搞定
   printAllLCS(dp, str1, str2, i-1, j).forEach(function(el){
    set.add(el)
   })
  } 
  return set
 } 
 }

Using:

function LCS(str1, str2){
 var m = str1.length 
 var n = str2.length
 //....略,自行补充
 var s = printAllLCS(dp, str1, str2, m, n)
 console.log(s)
 s.forEach(function(el){
  validateLCS(el,str1, str2)
  console.log("输出LCS",el)
 })
 return dp[m][n]
}
var c1 = LCS( "ABCBDAB","BDCABA");
console.log(c1) //4 BCBA、BCAB、BDAB
var c2 = LCS("13456778" , "357486782" );
console.log(c2) //5 34678 
var c3 = LCS("ACCGGTCGAGTGCGCGGAAGCCGGCCGAA" ,"GTCGTTCGGAATGCCGTTGCTCTGTAAA" );
console.log(c3) //20 GTCGTCGGAAGCCGGCCGAA

Space optimization

Using rolling array:

function LCS(str1, str2){
 var m = str1.length 
 var n = str2.length
 var dp = [new Array(n+1).fill(0)],now = 1,row //第一行全是0
 for(var i = 1; i <= m; i++){ //一共有2行
  row = dp[now] = [0] //第一列全是0
  for(var j = 1; j <= n; j++){//一共有n+1列
   if(str1[i-1] === str2[j-1]){ 
    //注意这里,str1的第一个字符是在第二列中,因此要减1,str2同理
    dp[now][j] = dp[i-now][j-1] + 1 //对角+1
   } else {
    dp[now][j] = Math.max( dp[i-now][j], dp[now][j-1]) 
   }
  }
  now = 1- now; //1-1=>0;1-0=>1; 1-1=>0 ...
 } 
 return row ? row[n]: 0
}

Dangerous recursive solution

A subsequence of str1 corresponds to a subsequence of the subscript sequence {1, 2, …, m} sequence, therefore, str1 has a total of ${2^m}$ different subsequences (the same is true for str2, such as ${2^n}$), so the complexity reaches an astonishing exponential time (${2^m * 2^ n}$).

//警告,字符串的长度一大就会爆栈
function LCS(str1, str2, a, b) {
  if(a === void 0){
   a = str1.length - 1
  }
  if(b === void 0){
   b = str2.length - 1
  }
  if(a == -1 || b == -1){
   return 0
  } 
  if(str1[a] == str2[b]) {
   return LCS(str1, str2, a-1, b-1)+1;
  }
  if(str1[a] != str2[b]) {
   var x = LCS(str1, str2, a, b-1)
   var y = LCS(str1, str2, a-1, b)
   return x >= y ? x : y
  }
 }

The above is what I compiled for everyone. I hope it will be helpful to everyone in the future.

Related articles:

Using vue to implement secondary route setting method

react project development

Implement multiple routing implementations in Vue-Router2.X

The above is the detailed content of How to implement the longest common subsequence in javascript. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn